Evaluation of MicroRNA as Minimal Residual Disease in Leukemia: Diagnostic and Prognostic Approach: A Review
Abstract
Various factors are effective in the development of minimal residual disease (MRD), one of which is MicroRNAsmiRNAs miRNAs and their dysfunction in gene expression have influential role in the pathogenesis of leukemia. Nowadays, treatments that lead to the suppression or replacement of miRNAs have been developed. Focusing on the role of miRNAs in managing the treatment of leukemia, in this review article we have investigated the miRNAs and signaling pathways involved in the process of apoptosis and cell proliferation, as well as miRNAs with oncogenic function in malignant leukemia cells. Among the studied miRNAs, miR-99a, and miR-181a play an essential role in apoptosis, proliferation and oncogenesis via AKT, MAPK, RAS, and mTOR signaling pathways. miR-223 and miR-125a affect apoptosis and oncogenesis via Wnt/B-catenin, PTEN/PI3K, and STAT5/AKT/ERK/Src signaling pathways. miR-100 also affects both apoptosis and oncogenesis; it acts via IGF1 and mTOR signaling pathways.
2. Noroozi M, Ghazizadeh F, Fani S (2021). Blood component therapy, demographic and outcome feature of pediatric acute lymphoblastic leukemia. J Prev Epidemiol,6(2):e37-e.
3. Leukemia AM. Cancer Stat Facts. SEER Available online: https://www.mybreastcancersupport.org/donate/?gclid=EAIaIQobChMIwZCMvKXYggMVitZ3Ch08ZAkMEAAYASAAEgJQYfD_BwE (accessed on 25 May 2020).
4. Meyers CA, Albitar M, Estey E (2005).Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer,104(4):788-93.
5. Wadai G (2022). Evaluation of Serum Interleukin-15 in Acute Lymphoid and Myeloid Leukemia Patients. Arch Razi Inst,77(5):1895-9.
6. Voso MT, Ottone T, Lavorgna S, et al (2019). MRD in AML: the role of new techniques. Front Oncol, 9:655.
7. Ghazizadeh F, Noroozi M, Shadara P, et al (2020). New therapy for chemotherapy-induced hepatic failure in leukemia; a randomized double-blind clinical trial study. Immunopathol Persa,7(2):e16-e.
8. Delgado J, Nadeu F, Colomer D, et al (2020). Chronic lymphocytic leukemia: From molecular pathogenesis to novel therapeutic strategies. Haematologica,105(9):2205-2217.
9. Cheung E, Perissinotti AJ, Bixby DL, et al (2019). The leukemia strikes back: a review of pathogenesis and treatment of secondary AML. Ann Hematol,98:541-59.
10. Hasanpour Dehkordi A, Keikhaei B, Bahadoram M, et al (2020). Keep the corners; impact of chemotherapy on renal function. J Nephropathol,9(1):e02.
11. Kotrová M, Koopmann J, Trautmann H, et al (2022). Prognostic value of low-level MRD in adult acute lymphoblastic leukemia detected by low-and high-throughput methods. Blood Adv,6(10):3006-10.
12. Della Starza I, Nunes V, Lovisa F, et al (2021). Droplet digital PCR improves ig-/tr-based mrd risk definition in childhood b-cell precursor acute lymphoblastic leukemia. Hemasphere, 5(3):e543.
13. Panuzzo C, Jovanovski A, Ali MS, et al (2022). Revealing the mysteries of acute myeloid leukemia: from quantitative PCR through next-generation sequencing and systemic metabolomic profiling. J Clin Med,11(3):483.
14. Rzepiel A, Kutszegi N, Egyed B, et al (2019). Circulating microRNAs as Potential Minimal Residual Disease Biomarkers in Pediatric Acute Lymphoblastic Leukemia. J Transl Med, 17(1):372.
15. Mahmoudian-Sani M-R, Mehri-Ghahfarrokhi A, Shojaeian A, et al (2018). The role of microRNAs in human cancers. Immunopathol Persa, 4(1):e05.
16. Satlsar ES, Ghahremanfard F, Farahani MM, et al (2019). Bi-lineage acute leukemia; a case with B-lymphoblasts and myeloid blasts. J Prev Epidemiol, 4(2):e14-e.
17. El‐Khazragy N, Noshi MA, Abdel‐Malak C, et al (2019). miRNA‐155 and miRNA‐181a as prognostic biomarkers for pediatric acute lymphoblastic leukemia. J Cell Biochem, 120(4):6315-21.
18. Stepicheva NA, Song JL (2016). Function and regulation of microRNA‐31 in development and disease. Mol Reprod Dev, 83(8):654-74.
19. Shete MV, Deshmukh RS, Kulkarni T, et al (2020). Myofibroblasts as important diagnostic and prognostic indicators of oral squamous cell carcinoma: An immunohistochemical study in normal oral mucosa, epithelial dysplasia, and oral squamous cell carcinoma. J Carcinog, 19:1.
20. Sanjaya A (2022). microRNA-379 as a Candidate Biomarker for Early Diagnosis of Childhood Active and Latent Tuberculosis.
21. Shahad FAA-Z, Mohammed AA, Jasim GA (2022). YKL-40 as a novel diagnostic biomarker in Toxoplasmosis. J Popul Ther Clin Pharmacol, 29(2):e61-e70.
22. Farsaeivahid N, Grenier C, Nazarian S, et al (2022). A Rapid Label-Free Disposable Electrochemical Salivary Point-of-Care Sensor for SARS-CoV-2 Detection and Quantification. Sensors (Basel), 23(1):433.
23. Zhao H, Wang D, Du W, et al (2010). MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol, 74(3):149-55.
24. Lalfamkima F, Georgeno G, Rao NK, et al (2021). Clinical diagnostic criteria versus advanced imaging in prediction of cervical lymph node metastasis in oral squamous cell carcinomas: A magnetic resonance imaging based study. J Carcinog, 20:3.
25. Erkeland SJ, Stavast CJ, Schilperoord-Vermeulen J, et al (2022). The miR-200c/141-ZEB2-TGFb axis is aberrant in human T-cell prolymphocytic leukemia. Haematologica, 107(1):143-153.
26. Garousi M, Tabar SM, Mirzai H, et al (2022). A global systematic review and meta-analysis on correlation between biofilm producers and non-biofilm producers with antibiotic resistance in Uropathogenic Escherichia coli. Microb Pathog, 164:105412.
27. Saleem Abd Alkreem Alsaqi S (2022). Immunohistochemical and Electron Microscopy Evolution in the Diagnosis of Lung Cancer in Iraq. Arch Razi Inst, 77(1):95-100.
28. Rao S, Anthony ML, Chowdhury N, et al (2021). Molecular characterization of lung carcinomas: A study on diagnostic, predictive, and prognostic markers using immunohistochemical analysis at a Tertiary Care Center in Uttarakhand, India. J Carcinog, 20:17.
29. Palacios F, Prieto D, Abreu C, et al (2015). Dissecting chronic lymphocytic leukemia microenvironment signals in patients with unmutated disease: microRNA-22 regulates phosphatase and tensin homolog/AKT/FOXO1 pathway in proliferative leukemic cells. Leuk Lymphoma, 56(5):1560-5.
30. Zhou J-d, Li X-x, Zhang T-j, et al (2019). MicroRNA-335/ID4 dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia. Aging (Albany NY), 11(10):3376-3391.
31. Heyn H, Engelmann M, Schreek S, et al (2011). MicroRNA miR‐335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer, 129(12):2797-806.
32. Zhang M, Xiong F, Zhang S, et al (2022). Crucial roles of miR-625 in human cancer. Front Med (Lausanne), 9:845094.
33. Thessing A, Ayres R, Jones J, et al (2022). Oxa-Michael/Ugi-Smiles cascade reaction with α, β-unsaturated aldehydes. Results in Chemistry, 4:100416.
34. Aliabedi B, Mousavi SH, Ebrahimi M, et al (2022). Hsa-miR-625 Upregulation Promotes Apoptosis in Acute Myeloid Leukemia Cell Line by Targeting Integrin-linked Kinase Pathway. Asian Pac J Cancer Prev, 23(4):1159-67.
35. Li X, Luo X, Han B, et al (2013). MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer, 109(8):2189-98.
36. Al-Dulaimi TH, Bunyan IA, Banimuslem TA (2022). Genomic Analysis study of Virulence Potential α-hemolysin from Uropathogenic E. coli. J Complement Med Res, 13(4):164.
37. Li Y, Gao L, Luo X, et al (2013). Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t (8; 21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood, 121(3):499-509.
38. Al-Harbi S, Aljurf M, Mohty M, et al (2020). An update on the molecular pathogenesis and potential therapeutic targeting of AML with t (8; 21)(q22; q22. 1); RUNX1-RUNX1T1. Blood Adv ,4(1):229-38.
39. Zahir ST, Hesami M, Gharaeikhezri A, et al (2021). The Evaluation of the recurrence and survival in patients with papillary thyroid cancer: A retrospective Study. P J M H S,15(3):1074-7.
40. Marquez ME, Sernbo S, Payque E, et al (2022). TGF-/SMAD Pathway is modulated by miR-26b-5p: another piece in the puzzle of chronic lymphocytic leukemia progression. Cancers (Basel), 14(7):1676.
41. Rastegarpouyani H, Mohebbi SR, Hosseini SM, et al (2018). Detection of Parvovirus 4 in Iranian patients with HBV, HCV, HIV mono-infection, HIV and HCV co-infection. Gastroenterol Hepatol Bed Bench, 11(2): 138-44.
42. Saberian P, Hesami M, Tavakoli N, et al (2022). At-risk COVID-19 Patients; Knowledge and Attitude of Those in Need of Transfer to Hospital and Consequences in Non-transferred Patients. Health Scope, 11(1): e119063.
43. Tahermanesh K, Hanjani S, Saadat Mostafavi SR, et al (2022). Hourglass cesarean scar: A neglected external niche in association with the internal niche. Int J Gynaecol Obstet, 157(2):478-480.
44. Elias MH, Syed Mohamad SF, Abdul Hamid N (2022). A Systematic Review of Candidate miRNAs, Its Targeted Genes and Pathways in Chronic Myeloid Leukemia-An Integrated Bioinformatical Analysis. Front Oncol, 12:848199.
45. Ufkin ML, Peterson S, Yang X, et al (2014). miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leuk Res, 38(3):402-10.
46. Zhang R, Tang P, Wang F, et al (2019). Tumor suppressor miR‐139‐5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway. J Cell Biochem, 120(3):4423-4432.
47. Lv M, Zhang X, Jia H, et al (2012). An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia,26(4):769-77.
48. Yuan T, Yang Y, Chen J, et al (2017). Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia,31(11):2355-64.
49. Behboodi R, Saadati Partan A, Meidaninikjeh S, et al (2023). Clostridium Bacteria: The Team of Microscopic Oncologists. IJBC, 15(4):178-202.
50. Liu N-w, Huang X, Liu S, et al (2019). EXT1, regulated by MiR-665, promotes cell apoptosis via ERK1/2 signaling pathway in acute lymphoblastic leukemia. Med Sci Monit, 25:6491.
51. Nie D, Ma P, Chen Y, et al (2021). MiR-204 suppresses the progression of acute myeloid leukemia through HGF/c-Met pathway. Hematology,26(1):931-9.
52. Kadhem Mallakh M, Mohammed Mahmood M, Hasan Mohammed Ali S (2022). Immunomolecular Investigation of Human Papillomavirus Genotypes (16, 18) and P63 Expression in Patients with Malignant and Non-malignant Colorectal Tumors. Arch Razi Inst,77(1):383-90.
53. Faridnejad H (2022). The impact of physicochemical modification on iron oxide nanoparticle relaxation enhancement in biomedical imaging in the anticancer sector. Scholars Research Journal,10(2):26-33.
54. Su R, Dong L, Zou D, et al (2016). microRNA-23a,-27a and-24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia. Oncogene, 35(46):6001-14.
55. Huang X, Schwind S, Santhanam R, et al (2016). Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget,7(37):59273-59286.
56. Wang LQ, Wong KY, Rosèn A, et al (2015). Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget,6(42):44422-36.
57. Ghiasi F, Hosseinzadeh Z, Nemati F, et al (2021). The Effect of Cognitive-Behavioral Therapy (CBT) on Anxiety Reduction in Critical Care Unit (CCU) Patients During Hospitalization. Journal of Intellectual Disability-Diagnosis and Treatment,9(3):304-10.
58. Ma J, Wu D, Yi J, et al (2019). MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomed Pharmacother, 112:108623.
59. Wang Z, Ma B, Ji X, et al (2015). MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int, 15:40.
60. Afaghi S, Esmaeili Tarki F, Sadat Rahimi F, et al (2021). Prevalence and Clinical Outcomes of Vitamin D Deficiency in COVID-19 Hospitalized Patients: A Retrospective Single-Center Analysis. Tohoku J Exp Med, 255(2):127-134.
61. Gu Y, Si J, Xiao X, et al (2017). miR-92a inhibits proliferation and induces apoptosis by regulating methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) expression in acute myeloid leukemia. Oncol Res, 25(7):1069-1079.
62. Alwaeely FA, Alsaadi MAK, Madlum KN (2021). Immunomodulatory Effect of Propolis on IFN-γ, IL-17A and IL-23 Production in Human Peripheral Blood Mononuclear Cells Treated with Pseudomonas aeruginosa Ag. jchr.;11(Special Issue: Bioactive Compounds: Their Role in the Prevention and Treatment of Diseases),143-51.
63. Nie Z-Y, Liu X-J, Zhan Y, et al (2019). miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Biosci Rep, 39(4):BSR20190150.
64. Wang X, Feng Y, Zhang P, et al (2020). miR‐582‐5p serves as an antioncogenic biomarker in intermediate risk AML with normal cytogenetics and could inhibit proliferation and induce apoptosis of leukemia cells. Cell Biol Int, 44(10):2021-2030.
65. Hu Y, Ma X, Wu Z, et al (2020). MicroRNA‐34a‐mediated death of acute myeloid leukemia stem cells through apoptosis induction and exosome shedding inhibition via histone deacetylase 2 targeting. IUBMB Life,72(7):1481-90.
66. Sun Y, Wang H, Luo C (2020). MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun, 522(4):855-861.
67. Liu H, Ni Z, Shi L, et al (2019). MiR-486-5p inhibits the proliferation of leukemia cells and induces apoptosis through targeting FOXO1. Mol Cell Probes, 44:37-43.
68. Fei J, Li Y, Zhu X, et al (2012). miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS One, 7(3):e32834.
69. Chen X, Yang S, Zeng J, et al (2019). miR‑1271‑5p inhibits cell proliferation and induces apoptosis in acute myeloid leukemia by targeting ZIC2. Mol Med Rep, 19(1):508-514.
70. Jiang T, Chen J, Huang X, et al (2018). miR-451a induced apoptosis of Philadelphia chromosome-positive acute lymphoblastic leukemia cells by targeting IL-6R. Neoplasma,65(6):907-14.
71. Tian C, You MJ, Yu Y, et al (2016). MicroRNA-9 promotes proliferation of leukemia cells in adult CD34-positive acute myeloid leukemia with normal karyotype by downregulation of Hes1. Tumour Biol, 37(6):7461-71.
72. Li G, Song Y, Li G, et al (2018). Downregulation of microRNA‑21 expression inhibits proliferation, and induces G1 arrest and apoptosis via the PTEN/AKT pathway in SKM‑1 cells. Mol Med Rep,18(3):2771-9.
73. Garzon R, Heaphy CE, Havelange V, et al (2009). MicroRNA 29b functions in acute myeloid leukemia. Blood,114(26):5331-41.
74. Wang Y, Tang P, Chen Y, et al (2017). Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-κB signaling pathway. Biochem Biophys Res Commun,488(1):60-66.
75. Ding Q, Wang Q, Ren Y, et al (2018). MicroRNA-126 attenuates cell apoptosis by targeting TRAF7 in acute myeloid leukemia cells. Biochem Cell Biol,96(6):840-6.
76. Xu H, Wen Q (2018). Downregulation of miR‑135a predicts poor prognosis in acute myeloid leukemia and regulates leukemia progression via modulating HOXA10 expression. Mol Med Rep,18(1):1134-40.
77. Hartmann J-U, Bräuer-Hartmann D, Kardosova M, et al (2018). MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dise, 9(8):814.
78. Fang ZH, Wang SL, Zhao JT, et al (2016). miR-150 exerts antileukemia activity in vitro and in vivo through regulating genes in multiple pathways. Cell Death Dis, 7(9):e2371.
79. Yan Z-X, Zheng Z, Xue W, et al (2015). MicroRNA181a is overexpressed in T-cell leukemia/lymphoma and related to chemoresistance. Biomed Res Int, 2015:197241.
80. Shen L, Du X, Ma H, et al (2017). miR-1193 suppresses the proliferation and invasion of human T-cell leukemia cells through directly targeting the transmembrane 9 superfamily 3 (TM9SF3). Oncol Res,25(9):1643-51.
81. Choi J, Kim Y-K, Park K, et al (2016). MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL–mediated leukemogenesis. Blood, 128(17):2117-29.
82. Bao J, Li X, Li Y, et al (2020). MicroRNA-141-5p acts as a tumor suppressor via targeting RAB32 in chronic myeloid leukemia. Front Pharmacol, 10:1545.
83. Tavolaro S, Colombo T, Chiaretti S, et al (2015). Increased chronic lymphocytic leukemia proliferation upon IgM stimulation is sustained by the upregulation of miR‐132 and miR‐212. Genes Chromosomes Cancer,54(4):222-34.
84. Hornick NI, Huan J, Doron B, et al (2015). Serum exosome microRNA as a minimally-invasive early biomarker of AML. Sci Rep, 5:11295.
85. Fasihi-Ramandi M, Moridnia A, Najafi A, et al (2017). Inducing cell proliferative prevention in human acute promyelocytic leukemia by miR-182 inhibition through modulation of CASP9 expression. Biomed Pharmacother, 89:1152-1158.
86. Braga TV, Evangelista FCG, Gomes LC, et al (2017). Evaluation of MiR-15a and MiR-16-1 as prognostic biomarkers in chronic lymphocytic leukemia. Biomed Pharmacother,92:864-9.
87. Liang Y-N, Tang Y-L, Ke Z-Y, et al (2017). MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J Steroid Biochem Mol Biol, 172:62-8.
88. Jia CY, Li HH, Zhu XC, et al (2011). MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS One, 6(11):e27008.
89. Rahmani F, Safavi P, Fathollahpour A, et al (2022). The interplay between non-coding RNAs and Wnt/ß-catenin signaling pathway in urinary tract cancers: from tumorigenesis to metastasis. EXCLI J, 21:1273-1284.
90. Sha C, Jia G, Jingjing Z, et al (2021). miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. Naunyn Schmiedebergs Arch Pharmacol, 394:177-87.
91. Emmrich S, Katsman-Kuipers J, Henke K, et al (2014). miR-9 is a tumor suppressor in pediatric AML with t (8; 21). Leukemia,28(5):1022-32.
92. Ahadi HR, Sadrabadi AE, Jalili A, et al (2022). Association of Interleukin 10 (IL-10) Gene Polymorphism (819T > C) with Susceptibility to Acute Myeloid Leukemia: A Meta-Analysis. Iran J Public Health, 51(1):19-26.
93. Zhou L, Fu L, Lv N, et al (2017). A minicircuitry comprised of microRNA-9 and SIRT1 contributes to leukemogenesis in t (8; 21) acute myeloid leukemia. Eur Rev Med Pharmacol Sci, 21(4):786-94.
94. Senyuk V, Zhang Y, Liu Y, et al (2013). Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci U S A, 110(14):5594-9.
95. Liu S, Wu L-C, Pang J, et al (2010). Sp1/NFκB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell, 17(4):333-47.
96. Pulikkan JA, Peramangalam PS, Dengler V, et al (2010). C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood, 116(25):5638-49.
97. Sharma S, Rai KR (2019). Chronic lymphocytic leukemia (CLL) treatment: So many choices, such great options. Cancer, 125(9):1432-40.
98. Thol F, Ganser A (2020). Treatment of relapsed acute myeloid leukemia. Curr Treat Options Oncol, 21(8):66.
99. Pekarsky Y, Balatti V, Croce CM (2018). BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ, 25(1):21-26.
100. Zaafan MA, Abdelhamid AM (2022). Dasatinib ameliorates thioacetamide-induced liver fibrosis: modulation of miR-378 and miR-17 and their linked Wnt/β-catenin and TGF-β/smads pathways. J Enzyme Inhib Med Chem, 37(1):118-24.
Files | ||
Issue | Vol 52 No 12 (2023) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijph.v52i12.14315 | |
Keywords | ||
MicroRNAs Minimal residual disease Pathogenesis Prognosis Diagnosis |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |