View Point

CRISPR Pioneers Win 2020 Nobel Prize for Chemistry

Abstract

Over the last few years, the development of genome editing has revolutionized research on the human genome. Recent advances in developing programmable nucleases, such as meganucleases, ZFNs, TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas, has greatly expedited the progress of gene editing from concept to clinical practice. The CRISPR has advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Eight years after CRISPR application for human genome edition by Emmanuelle Charpentier and Jennifer A. Doudna, the 2020 Nobel Prize in Chemistry has been jointly given to them for development of CRISPR-Cas9 gene editing, allows scientists to precisely cut and edit of DNA.

1. Ledford H, Callaway E (2020). Pioneers of revolutionary CRISPR gene editing win chemistry Nobel https://www.nature.com/articles/d41586-020-02765-9
2. Synthego (2020).16 CRISPR Scientists & Pi-oneers: The Real Heroes of Genome Engineering https://www.synthego.com/blog/crispr-scientists
3. Jinek M, Chylinski K, Fonfara I, et al (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-21.
4. Anonymous (2020). www.firstpost.com. Ac-cessed on 10 Oct 2020.
5. Cong L, Ran FA, Cox D, et al (2013). Multi-plex genome engineering using CRISPR/Cas systems. Science, 339(6121):819-23.
6. Mali P, Yang L, Esvelt KM, et al (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121):823-6.
7. Tamulaitis G, Venclovas Č, Siksnys V (2017). Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends Microbiol, 25(1):49-61.
8. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic ele-ments. J Mol Evol, 60(2):174-82.
9. Hendel A, Kildebeck EJ, Fine EJ, et al (2014). Quantifying genome-editing out-comes at endogenous loci with SMRT sequencing. Cell Rep,7(1):293-305.
10. Komor AC, Zhao KT, Packer MS, et al (2017). Improved base excision repair in-hibition and bacteriophage Mu Gam pro-tein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3(8):eaao4774.
11. Cho GY, Abdulla Y, Sengillo JD, et al (2017). CRISPR-mediated Ophthalmic Genome Surgery. Curr Ophthalmol Rep, 5(3):199-206.
12. Esvelt KM, Mali P, Braff JL, et al (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11):1116-21.
13. Stanley Qi (2020). Expanding the CRISPR Toolbox. CRISPR J, 3(2):65.
14. Hsu PD, Lander ES, Zhang F (2014). De-velopment and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6):1262-1278.
15. Eyquem J, Mansilla-Soto J, Giavridis T, et al (2017).Targeting a CAR to the TRAC lo-cus with CRISPR/Cas9 enhances tumour rejection. Nature, 543(7643):113-117.
16. Lin PC, Corn JE (2015). Co-opting CRISPR to deliver functional RNAs. Nat Methods, 12(7):613-4.
17. Van Eenennaam AL (2018). The Im-portance of a Novel Product Risk-Based Trigger for Gene-Editing Regulation in Food Animal Species. CRISPR J, 1:101-106.
18. Ishino Y, Shinagawa H, Makino K, et al (1987). Nucleotide sequence of the iap gene, responsible for alkaline phospha-tase isozyme conversion in Escherichia coli, and identification of the gene prod-uct. J Bacteriol, 169(12): 5429–5433.
19. Addgene (2020). CRISPR History and De-velopment for Genome Engineering https://www.addgene.org/crispr/history/
20. Embden JD, Cave MD, Crawford JT, et al (1993). Strain identification of Mycobacte-rium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol, 31(2):406-409.
21. Jiang W, Bikard D, Cox D, Zhang F, Mar-raffini LA (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 233–239.
22. Ran, FA, Hsu PD, Wright J, et al (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2281–2308.
23. Nalawansha DA, Samarasinghe KTG (2020). Double-Barreled CRISPR Tech-nology as a Novel Treatment Strategy for COVID-19. ACS Pharmacol Transl Sci, 3(5):790-800.
24. Li H , Yang Y , Hong W, et al (2020). Ap-plications of genome editing technology in the targeted therapy of human diseas-es: mechanisms, advances and prospects. Signal Transduct Target Ther (2020) 5:1.
25. Zarif-Yeganeh M, Farhud DD, Kherad-mand-Kia S, et al (2020). Optimization and Validation of RET Gene Knockout using CRISPR System in Medullary Thy-roid Carcinoma Cell lines. Iran J Public Health (In Press).
26. Gholizadeh P, Aghazadeh M, Ghotaslou R, et al (2020). CRISPR- cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence, 11(1):1257-1267.
27. Khosravi MA, Abbasalipour M, Concordet JP, et al (2019). Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol, 854:398-405.
Files
IssueVol 49 No 12 (2020) QRcode
SectionView Point
DOI https://doi.org/10.18502/ijph.v49i12.4800
Keywords
Clustered regularly interspaced short palindromic repeats Gene therapy Nobel Prize

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
FARHUD DD, ZARIF-YEGANEH M. CRISPR Pioneers Win 2020 Nobel Prize for Chemistry. Iran J Public Health. 2020;49(12):2235-2239.