SARS-Cov-2 and COVID-19, Basic and Clinical Aspects of the Human Pandemic: A Review
Abstract
In the last two decades, we have witnessed three major epidemics of the coronavirus human disease namely, severe acute respiratory syndrome (SARS), Middle Eastern respiratory syndrome, and more recently an ongoing global pandemic of coronavirus disease 2019 (COVID-19). Iran, a country of nearly 84 million, in the Middle East, severely involved with the COVID-19 disease. A documented multidimensional approach to COVID-19 disease is therefore mandatory to provide a well-balanced platform for the concerned medical community in our county and beyond. In this review, we highlight the disease status in Iran and attempt to provide a multilateral view of the fundamental and clinical aspects of the disease including the clinical features of the confirmed cases, virology, pathogenesis, epidemiology, and laboratory methods needed for diagnosis.
2. Huang C, Wang Y, Li X, et al (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223): 497-506.
3. Yavarian J, Rezaei F, Shadab A, et al (2015). Cluster of Middle East respiratory syndrome coronavirus infections in Iran, 2014. Emerg Infect Dis, 21(2): 362–364.
4. Noorbakhsh F, Abdolmohammadi K, Fatahi Y, et al (2019). Zika Virus Infection, Basic and Clinical Aspects: A Review Article. Iran J Public Health, 48 (1): 20-31.
5. Smits SL, Lavazza A, Matiz K, et al (2003). Phylogenetic and evolutionary relationships among torovirus field variants: evidence for multiple intertypic recombination events. Journal of Virology, 77 (17): 9567-77.
6. Jila Yavarian N-ZS-J, et al (2020). First Cases of SARS-CoV-2 in Iran, 2020:Case Series Report. Iran J Public Health, 49 (8): 1564-1568.
7. Haynes B, Messonnier NE, Cetron MS (2020). First travel-related case of 2019 novel coronavirus detected in United States. https://www.cdc.gov/media/releases/2020/p0121-novel-coronavirus-travel-case.html
8. Haynes B, Messonnier NE, Cetron MS (2020). Second travel-related case of 2019 novel coronavirus detected in United States : press release, Friday, January 24, 2020. https://stacks.cdc.gov/view/cdc/84536
9. Wang C, Horby PW, Hayden FG, et al (2020). A novel coronavirus outbreak of global health concern. Lancet, 395(10223):470-473.
10. WHO (2020). Coronavirus disease 2019 (COVID-19) Situation Report – 36. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200225-sitrep-36-covid-19.pdf?sfvrsn=2791b4e0_2.
11. Tuite AR, Bogoch I, Sherbo R, et al (2020). Estimation of COVID-2019 burden and potential for international dissemination of infection from Iran. Ann Intern Med, 16 : M20-0696.
12. ECDC (2020). COVID-19 situation update worldwide, as of week 10, updated 18 March 2021. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
13. Lambeir A-M, Durinx C, Scharpé S, et al (2003). Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci, 40(3): 209-94.
14. Raj VS, Mou H, Smits SL, et al (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495 (7440): 251-4.
15. Luk HK, Li X, Fung J, et al (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol, 71:21-30.
16. Sahin AR, Erdogan A, Agaoglu PM, et al (2020). 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature. EJMO, 4 (1): 1-7.
17. Lai C-C, Shih T-P, Ko W-C, et al (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents, 55(3):105924.
18. Chu H, Zhou J, Wong BH-Y, et al (2014). Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology, 454-455:197-205.
19. Song P, Li W, Xie J, et al (2020). Cytokine storm induced by SARS-CoV-2. Clin Chim Acta, 509:280-287.
20. Coperchini F, Chiovato L, Croce L, et al (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev, 53:25-32.
21. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al (2020). Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol, 2(8):e474-e484.
22. Biran N, Ip A, Ahn J, et al (2020). Tocilizumab among patients with COVID-19 in the intensive care unit: a multicentre observational study. Lancet Rheumatol, 2(10):e603-e612.
23. Qin C, Zhou L, Hu Z, et al (2020). Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China. Clin Infect Dis, 71 (15): 762-768.
24. Bermejo-Martin JF, Almansa R, Menéndez R, et al (2020). Lymphopenic community acquired pneumonia as signature of severe COVID-19 infection: Lymphopenia in severe COVID-19 infection. J Infect, 80(5):e23-e24.
25. Diao B, Wang C, Tan Y, et al (2020). Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front Immunol, 11: 827.
26. Wu F, Zhao S, Yu B, et al (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798):265-269.
27. Tan L, Wang Q, Zhang D, et al (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther, 5(1):33.
28. Zhou P, Yang X-L, Wang X-G, et al (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836):E6.
29. Fathi N, Rezaei N (2020). Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int, 3 : 10.
30. Deng Z, Zhang M, Zhu T, et al (2020). Dynamic changes in peripheral blood lymphocyte subsets in adult patients with COVID-19. Int J Infect Dis, 98:353-358.
31. Li S, Zhang Y, Guan Z, et al (2020). SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduction and Targeted Therapy, 5 (1): 235.
32. Xu Z, Shi L, Wang Y, et al (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8(4):420-422.
33. Wang D, Hu B, Hu C, et al (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 323 (11): 1061-1069.
34. Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, et al (2018). Shared features of endothelial dysfunction between sepsis and its preceding risk factors (aging and chronic disease). J Clin Med, 7 (11): 400.
35. Herrera MD, Mingorance C, Rodríguez-Rodríguez R, de Sotomayor MA (2010). Endothelial dysfunction and aging: an update. Ageing Res Rev, 9 (2): 142-52.
36. Vischer U (2006). von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost, 4 (6): 1186-93.
37. Zhang C (2008). The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol, 103 (5): 398-406.
38. Huang Y, Zhou H, Yang R, Xu Y, Feng X, Gong P (2020). Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China.medRxiv,https://doi.org/10.1101/2020.02.27.20029009
39. Guan W-j, Ni Z-y, Hu Y, et al (2020). Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 382: 1708-1720.
40. WHO (2020). Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance. https://appswhoint/iris/handle/10665/331329
41. Corman VM, Landt O, Kaiser M, et al (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 25 (3): 2000045.
42. Shirvani A, Azimi L, Mansour Ghanaie R, et al (2020). Utility of Available Methods for Diagnosing SARS-CoV-2 in Clinical Samples. Archives of Pediatric Infectious Diseases, 8 (3): e103677.
43. Zhang Y, Chen C, Song Y, et al (2020). Excretion of SARS-CoV-2 through faecal specimens. Emerg Microbes Infect, 9(1):2501-2508.
44. Zhang W, Du R-H, Li B, et al (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect, 9 (1): 386-389.
45. Liu Y, Yang Y, Zhang C, et al (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci, 63 (3): 364-374.
46. Chan JF, Yip CC, To KK, et al (2020). Improved molecular diagnosis of COVID-19 by the novel, highly sensi-tive and specific COVID-19-RdRp/Hel real-time reverse transcrip-tion-polymerase chain reaction assay validated in vitro and with clinical specimens. J Clin Microbiol, 58 (5): e00310-20
47. Shi H, Han X, Jiang N, et al (2020). Ra-diological findings from 81 patients with COVID-19 pneumonia in Wu-han, China: a descriptive study. Lancet Infect Dis, 20(4):425-434.
48. Jin YH, Cai L, Cheng ZS, et al (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res, 7: 4.
49. Bain LE, Ngwain CG, Nwobegahay J, et al (2018). Research Ethics Committees (RECs) and epidemic response in low and middle income countries. Pan Afr Med J, 31: 209.
50. Lu S (2020).Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect, 9 (1): 542-544.
51. Shrestha B, Dunn L (2020). The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J Nepal Health Res Counc, 17(4):548-552.
52. Ippolito G, Hui DS, Ntoumi F, et al (2020). Toning down the 2019-nCoV media hype-and restoring hope. Lancet Respir Med, 8 (3): 230-231.
53. Bhowmick GD, Dhar D, Nath D, et al (2020). Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. npj Clean Water, 3 (1): 32.
54. Sit THC, Brackman CJ, Ip SM, et al (2020). Infection of dogs with SARS-CoV-2. Nature, 586(7831):776-778.
55. Sabzali A (2020). The Coronavirus Transmission by Wastewater and Biosolids Reuse for Agricultural Usages: A Literature Review. Am J Biomed Sci, 8 (5): 365-8.
56. Jahangirifard A, Ahmadi ZH, Daneshvar Kakhaki A, et al (2018). ECMO-assisted resection of huge thoracic mass. J Cardiovasc Thorac Res, 10 (3): 174-176.
57. MacLaren G, Fisher D, Brodie D (2020). Preparing for the Most Critically Ill Patients With COVID-19: The Potential Role of Extracorporeal Membrane Oxygenation. JAMA, 323 (13): 1245-1246.
Files | ||
Issue | Vol 50 No 4 (2021) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijph.v50i4.5991 | |
Keywords | ||
Coronaviruses Coronavirus disease 2019 COVID-19 SARS-CoV-2 |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |