Original Article

Comparison of the Prevalence of Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) among Staphylococcus aureus Isolates in a Burn Unit with Non-Burning Units


Background: Staphylococcus aureus (S. aureus) is one of the most important pathogens in burn infections colonized in the nose and increase the risk of infections.

Methods: Overall, 85 S. aureus isolates were isolated from clinical and nasal hospitalized patients and health care workers (HCWs) in a burn unit and non-burn units in Isfahan from June 2016 and September 2016. Genes encoding penicillin-binding protein 2a (mecA) and adhesive surface proteins, including fibronectin-binding proteins (fnbA, fnbB), fibrinogen binding protein (fib), laminin-binding protein(eno), collagen binding protein (cna), elastin binding protein (ebps), intracellular adhesion operon (icaA and icaD) were detected using PCR method.

Results: The rate of methicillin-resistant S. aureus (MRSA) among burn and non-burn isolates were 62% (18/29) and 25% (14/56), respectively. The most prevalent MSCRAMMs genes in burn units were eno (86%) and fib (66%). The most common gene pattern in burn center was icaA+fib+eno. The frequency of icaD, fib and ebpS was higher in clinical samples than nasal samples. No relation was found between the MSCRAMMs genes in the burn unit and non-burn units.

Conclusion: The high prevalence of MRSA in burn center can be a new challenge for clinicians. The higher frequency of icaD, fib and ebpS in clinical isolates than nasal isolates may reflect the important role of these genes in colonization and pathogenesis of S. aureus.

1. Deurenberg RH, Beisser PS, Visschers MJ, et al (2010). Molecular typing of methicillin-susceptible Staphylococcus aureus isolates collected in the Yogyakarta area in Indonesia, 2006. Clin Microbiol Infect, 16 (1):92-4.
2. Yu Y, Yao Y, Weng Q, et al (2017). Dissemination and Molecular Characterization of Staphylococcus aureus at a Tertiary Referral Hospital in Xiamen City, China. BioMed Research International, (41):1-9.
3. Kooistra-Smid M, Nieuwenhuis M, van Belkum A, et al (2009). The role of nasal carriage in Staphylococcus aureus burn wound colonization. FEMS Immunol Med Microbiol, 57 (1):1-13.
4. Wysocki AB (2002). Evaluating and managing open skin wounds: colonization versus infection. AACN Clin Issues, 13 (3):382-97.
5. McKenna E, Clement K, Thompson E, et al (2011). Using a nursing productivity committee to achieve cost savings and improve staffing levels and staff satisfaction. Crit Care Nurse, 31 (6):55-65.
6. Erol S, Altoparlak U, Akcay MN, et al (2004). Changes of microbial flora and wound colonization in burned patients. Burns, 30 (4):357-61.
7. Karimi M, Esfahani BN, Halaji M, et al (2017). Molecular characteristics and antibiotic resistance pattern of Staphylococcus aureus nasal carriage in tertiary care hospitals of Isfahan, Iran. Infez Med, 25 (3):234-240.
8. Moshtagheian S, Halaji M, Sedaghat H, et al (2018). Molecular characteristics of methicillin-resistant Staphylococcus aureus nasal carriage from hospitalized patients and medical staff in Isfahan, Iran. Ann Ig, 30 (3):237-44.
9. Khoramrooz SS, Mansouri F, Marashifard M, et al (2016). Detection of biofilm related genes, classical enterotoxin genes and agr typing among Staphylococcus aureus isolated from bovine with subclinical mastitis in southwest of Iran. Microb Pathog, 97:45-51.
10. Hoveida L, Halaji M, Rostami S, et al (2019). Biofilm-producing ability of Staphylococcus spp isolated from different foodstuff products. Ann Ig, 31 (2):140-147.
11. Havaei SA, Vidovic S, Tahmineh N, et al (2011). Epidemic methicillin-susceptible Staphylococcus aureus lineages are the main cause of infections at an Iranian university hospital. J Clin Microbiol, 49 (11):3990-3.
12. Ito T, Kuwahara-Arai K, Katayama Y, et al (2014). Staphylococcal Cassette Chromosome mec (SCCmec) analysis of MRSA. Methods Mol Biol, 1085:131-48.
13. Sedaghat H, Esfahani BN, Mobasherizadeh S, et al (2017). Phenotypic and genotypic characterization of macrolide resistance among Staphylococcus aureus isolates in Isfahan, Iran. Iran J Microbiol, 9 (5):264-70.
14. Halaji M, Karimi A, Shoaei P, et al (2017). Distribution of SCCmec Elements and Presence of Panton-Valentine Leukocidin in Methicillin-Resistant Staphylococcusepidermidis Isolated from Clinical Samples in a University Hospital of Isfahan City, Iran. J Clin Diagn Res, 11(7):DC27-DC31.
15. Mahon CR LD, Manuselis G. Textbook of Diagnostic Microbiology-E-Book. Elsevier Health Sciences; 2014 Mar 25.
16. Vancraeynest D, Hermans K, Haesebrouck F (2004). Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Vet Microbiol, 103 (3-4):241-7.
17. Motallebi M, Jabalameli F, Asadollahi K, et al (2016). Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microb Pathog, 97:34-7.
18. Ohadian Moghadam S, Pourmand MR, Aminharati F (2014). Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J Infect Dev Ctries, 8 (12):1511-7.
19. Fatholahzadeh B, Emaneini M, Gilbert G, et al (2008). Staphylococcal cassette chromosome mec (SCCmec) analysis and antimicrobial susceptibility patterns of methicillin-resistant Staphylococcus aureus (MRSA) isolates in Tehran, Iran. Microb Drug Resist, 14 (3):217-20.
20. Hoseini Alfatemi SM, Motamedifar M, Hadi N, et al (2014). Analysis of Virulence Genes Among Methicillin Resistant Staphylococcus aureus (MRSA) Strains. Jundishapur J Microbiol, 7 (6):e10741.
21. Shahini Shams-Abadi M, Halaji M, Hoseini-Alfatemi SM, et al (2018). Epidemiology of toxic shock syndrome toxin-1 harboring Staphylococcus aureus obtained from clinical samples in Iran: A Systematic Review and Meta-analysis. Ann Ig, 30 (5):391-400.
22. Martin-Lopez JV, Perez-Roth E, Claverie-Martin F, et al (2002). Detection of Staphylococcus aureus Clinical Isolates Harboring the ica Gene Cluster Needed for Biofilm Establishment. J Clin Microbiol, 40 (4):1569-70.
23. Arciola CR, Campoccia D, Gamberini S, et al (2005). Prevalence of cna, fnbA and fnbB adhesin genes among Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS Microbiol Lett, 246 (1):81-6.
24. Rhem MN, Lech EM, Patti JM, et al (2000). The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis. Infect Immun, 68 (6):3776-9.
25. Jett BD, Gilmore MS (2002). Host-parasite interactions in Staphylococcus aureus keratitis. DNA Cell Biol, 21 (5-6):397-404.
26. Duran N, Dogramaci Y, Demir C, et al (2010). Detection of slime and methicillin resistance genes in Staphylococci isolated from nasal samples of patients with orthopaedic implants. Med Sci Monit, 16 (8):BR271-7.
27. Serray B, Oufrid S, Hannaoui I, et al (2016). Genes encoding adhesion factors and biofilm formation in methicillin-resistant Staphylococcus aureus in Morocco. J Infect Dev Ctries, 10 (8):863-9.
28. Yousefi M, Pourmand MR, Fallah F, et al (2016). Characterization of Staphylococcus aureus Biofilm Formation in Urinary Tract Infection. Iran J Public Health, 45 (4):485-93.
29. Ghasemian A, Najar Peerayeh S, Bakhshi B, et al (2015). The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) Genes among Clinical Isolates of Staphylococcus aureus from Hospitalized Children. Iran J Pathol, 10 (4):258-64.
30. Tristan A, Ying L, Bes M, et al (2003). Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol, 41 (9):4465-4467.
31. Rasmussen G, Monecke S, Ehricht R, et al (2013). Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden. PLoS One, 8 (10):e77477.
IssueVol 50 No 1 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijph.v50i1.5081
Staphylococcus aureus Methicillin-resistant S. aureus Surface proteins Proteins

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
SEDAGHAT H, NARIMANI T, NASR ESFAHANI B, MOBASHERIZADEH S, HAVAEI SA. Comparison of the Prevalence of Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) among Staphylococcus aureus Isolates in a Burn Unit with Non-Burning Units. Iran J Public Health. 2020;50(1):146-151.