Review Article

Regenerative Medicine in the Treatment of Alzheimer's Disease: A Narrative Review

Abstract

Alzheimer’s disease (AD) is one of the progressive neurodegenerative diseases, memory impairments and multiple cognitive and behavioral deficits characterize that. We aimed to evaluate the molecular mechanisms involved in the pathogenesis of AD. It introduces the regenerative medicine approach as a novel therapeutic strategy based on the pathogenesis of AD that would be efficient. Our data was collected using databases such as the Web of Science, PubMed, Scopus, and Google Scholar. We summarized the available therapeutic strategies to induce neurodegeneration that can increase the number of neurons and their survival and improve the plasticity of synapses and synaptic activity. There is a different approach to treatment. In first-line treatment, focusing declines the amyloid beta and hypophosphorylated tau protein accumulation. It inhibits acetylcholinesterase, but in regenerative medicine focusing on treatment via gene therapy, cell therapy, and tissue engineering. As a proposed solution for AD in recent years, the use of inhibitors of the pathogenesis of AD is known as a supportive therapeutic approach, but the multi-potential treatment of regenerative medicine has been able to provide promising results in treating neurodegenerative patients.

1. Aisen P, Briand R, Saumier D, Laurin J, Duong A, Garceau D (2008). Targeting amyloid with tramiprosate in patients with mild-to-moderate Alzheimer disease. Progress in Neurotherapeutics and Neuropsychopharmacology,3 (1):111-25.
2. Rabiei Z AS, Bigdeli M.R. (2015). Medical herbs effective in the treatment of the Alzheimer disease. Journal of Babol University of Medical Sciences,17 (3):51-9.
3. Hampel H, Mesulam M-M, Cuello AC, et al et al (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain,141 (7):1917-33.
4. Conejero-Goldberg C, Gomar J, Bobes-Bascaran T, et al (2014). APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol Psychiatry,19 (11):1243-50.
5. Matsui T, Ingelsson M, Fukumoto H, et al (2007). Expression of APP pathway mRNAs and proteins in Alzheimer's disease. Brain Res,1161:116-23.
6. O'brien RJ, Wong PC (2011). Amyloid precursor protein processing and Alzheimer's disease. Ann Rev Neurosci,34:185-204.
7. Zheng H, Koo EH (2011). Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener,6 (1):27.
8. Hampel H, Hardy J, Blennow K, et al (2021). The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry,26 (10):5481-503.
9. Zhang Y-w, Thompson R, Zhang H, Xu H (2011). APP processing in Alzheimer's disease. Mol Brain,4 (1):3.
10. Kadavath H, Hofele RV, Biernat J, et al (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences,112 (24):7501-6.
11. Goedert M, Jakes R (1990). Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J,9 (13):4225-30.
12. Lindwall G, Cole RD (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem,259 (8):5301-5.
13. Dubey J, Ratnakaran N, Koushika SP (2015). Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci,9:343.
14. Zhao Y, Zhao B (2013). Oxidative stress and the pathogenesis of Alzheimer′ s disease. Oxid Med Cell Longev,2013 (1):316523.
15. Yan X, Hu Y, Wang B, Wang S, Zhang X (2020). Metabolic dysregulation contributes to the progression of Alzheimer’s disease. Front Neurosci,14:530219.
16. Bezerra da Silva C, Pott A, Elifio-Esposito S, et al (2016). Effect of donepezil, tacrine, galantamine and rivastigmine on acetylcholinesterase inhibition in Dugesia tigrina. Molecules,21 (1):53.
17. Asgharzade S, Rabiei Z, Rafieian-Kopaei M (2015). Effects of Matricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats. Asian Pacific J Trop Biomed,5 (10):829-33.
18. Zahra R, Shiva M, Samira A, Mostafa G, Samira R, Mahmoud R-k (2015). Inhibitory effect ofThymus vulgaris extract on memory impairment induced by scopolamine in rat. Asian Pacific J Trop Biomed:806-11.
19. Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE (2008). Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging,3 (2):211-25.
20. Amin J, Paquet C, Baker A, et al (2015). Effect of amyloid‐β (A β) immunization on hyperphosphorylated tau: a potential role for glycogen synthase kinase (GSK)‐3β. Neuropathol Appl Neurobiol,41 (4):445-57.
21. Zhang X, Heng X, Li T, et al (2011). Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer's disease transgenic mouse model. J Alzheimer's Dis,24 (4):739-49.
22. Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M (2012). Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J Biol Chem, 287 (2):893-904.
23. Boutajangout A, Wisniewski T (2014). Tau-based therapeutic approaches for Alzheimer's disease-a mini-review. Gerontology,60 (5):381-5.
24. Malpas CB, Vivash L, Genc S, et al (2016). A phase IIa randomized control trial of VEL015 (Sodium Selenate) in mild-moderate Alzheimer’s disease. J Alzheimer's Dis,54 (1):223-32.
25. Bhargava S, Kulkarni R, Dewangan B, et al (2023). Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem,14 (11):2192-205.
26. Brunden KR, Trojanowski JQ, Smith III AB, Lee VM-Y, Ballatore C (2014). Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem,22 (18):5040-9.
27. Badiola N, Alcalde V, Pujol A, et al (2013). The proton-pump inhibitor lansoprazole enhances amyloid beta production. PloS One, 8 (3):e58837.
28. Blair LJ, Sabbagh JJ, Dickey CA (2014). Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin Ther Targets,18 (10):1219-32.
29. Ma QL, Zuo X, Yang F, et al (2013). Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem,288 (6):4056-65.
30. Kasibhatla AKS, Biamonte M, Zhang H, et al (2007). Small-molecule HSP90 Inhibitors: Applications in Cancer and Neurodegenerative Diseases. Heat Shock Proteins in Cancer:275-94.
31. Lahiri DK, Chen D, Maloney B, et al (2007). The experimental Alzheimer's disease drug posiphen [ (+)-phenserine] lowers amyloid-β peptide levels in cell culture and mice. J Pharmacol Exp Therap,320 (1):386-96.
32. Aisen PS, Gauthier S, Ferris SH, et al (2011). Tramiprosate in mild-to-moderate Alzheimer’s disease–a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci,7 (1):102-11.
33. Ma K, Thomason LA, McLaurin J (2012). Scyllo-inositol, preclinical, and clinical data for Alzheimer’s disease. Adv Pharmacol,64:177-212.
34. Barker R, Love S, Kehoe PG (2010). Plasminogen and plasmin in Alzheimer's disease. Brain Res,1355:7-15.
35. Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS (2008). Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis,5 (3-4):194-6.
36. Robinson SR, Bishop GM, Lee H-g, Münch G (2004). Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging, 25 (5):609-15.
37. Vandenberghe R, Riviere ME, Caputo A, et al (2017). Active Aβ immunotherapy CAD106 in Alzheimer's disease: A phase 2b study. Alzheimers Dement (N Y),3 (1):10-22.
38. Hull M, Sadowsky C, Arai H, et al (2017). Long-Term extensions of randomized vaccination trials of ACC-001 and QS-21 in mild to moderate alzheimer's disease. Cur Alzheimer Res,14 (7):696-708.
39. Panza F, Frisardi V, P Imbimbo B, et al (2011). Anti-β-amyloid immunotherapy for Alzheimer's disease: focus on bapineuzumab. Curr Alzheimer Res,8 (8):808-17.
40. Moradi Z, Rabiei Z, Anjomshoa M, et al (2021). Neuroprotective effect of wild lowbush blueberry (Vaccinium angustifolium) on global cerebral ischemia/reperfusion injury in rats: Downregulation of iNOS/TNF‐α and upregulation of miR‐146a/miR‐21 expression. Phytother Res,35 (11):6428-40.
41. Habtemariam S (2016). Rutin as a natural therapy for Alzheimer’s disease: Insights into its mechanisms of action. Cur Med Chem, 23 (9):860-73.
42. Mishra S, Palanivelu K (2008). The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann Indian Academy Neurol,11 (1):13.
43. Lin L, Huang QX, Yang SS, et al (2013). Melatonin in Alzheimer’s disease. Int J Mol Sci,14 (7):14575-93.
44. Dumont M, Kipiani K, Yu F, et al (2011). Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer's disease. J Alzheimer's Dis,27 (1):211-23.
45. Yang X, Zhang Y, Xu H, et al (2016). Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem,16 (8):858-66.
46. Montgomery SA, Thal L, Amrein R (2003). Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease. Int Clin Psychopharmacol,18 (2):61-71.
47. Yun H, Kim H, Park K, et al (2013). Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1–42-infused mouse model of Alzheimer’s disease. Cell Death Dis,4 (12):e958-e.
48. Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F (2020). A review on stem cell therapy for neuropathic pain. Curr Stem Cell Res Ther,15 (4):349-61.
49. Walsh TJ, Chrobak JJ (2013). Animal Models of Alzheimer's Disease: Role of Hippocampal Cholinergic Systems in Working Memory. Current Topics in Animal Learning. Psychology Press; 2013. p. 359-92.
50. Park D, Lee HJ, Joo SS, et al (2012). Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol,234 (2):521-6.
51. Zhang L, Dong ZF, Zhang JY (2020). Immunomodulatory role of mesenchymal stem cells in Alzheimer's disease. Life Sci, 246:117405.
52. Lee HJ, Lee JK, Lee H, et al (2010). The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease. Neurosci lett,481 (1):30-5.
53. Ding M, Shen Y, Wang P, et al (2018). Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s disease. Neurochem Res,43:2165-77.
54. Danielyan L, Beer-Hammer S, Stolzing A, et al (2014). Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer's and Parkinson's disease. Cell Transplant,23 (1_suppl):123-39.
55. Vassar R (2014). BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimer's Res Ther,6 (9):89.
56. Singer O, Marr RA, Rockenstein E, et al (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci,8 (10):1343-9.
57. Li Y, Wang J, Zhang S, Liu Z (2015). Neprilysin gene transfer: A promising therapeutic approach for A lzheimer's disease. J Neurosci Res,93 (9):1325-9.
58. Tanila H (2017). The role of BDNF in Alzheimer's disease. Neurobiol Dis,97:114-8.
59. Tuszynski MH, Thal L, Pay M, et al (2005). A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med,11 (5):551-5.
60. Cao Y, Zhang R (2022). The application of nanotechnology in treatment of Alzheimer’s disease. Front Bioengin Biotechnol,10: 1042986.
61. Beltagy DM, Nawar NF, Mohamed TM, Tousson E, El-Keey MM (2024). The synergistic effect of nanocurcumin and donepezil on Alzheimer's via PI3K/AKT/GSK-3β pathway modulating. Prostaglandins Other Lipid Mediat,170:106791.
62. Arora S, Layek B, Singh J (2021). Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood-Brain Barrier for Effective Treatment of Alzheimer's Disease. Mol Pharm,18 (2):714-25.
63. Hou K, Zhao J, Wang H, et al (2020). Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease. Nat Commun,11 (1):4790.
64. Topal GR, Mészáros M, Porkoláb G, et al (2020). ApoE-Targeting Increases the Transfer of Solid Lipid Nanoparticles with Donepezil Cargo across a Culture Model of the Blood-Brain Barrier. Pharmaceutics,13 (1):38.
65. AnjiReddy K, Karpagam S (2017). Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation. Int J Biol Macromol,105:131-42.
66. Meng Q, Wang A, Hua H, et al (2018). Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int J Nanomed,13:705-18.
67. Wilson B, Mohamed Alobaid BN, Geetha KM, Jenita JL (2021). Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer's disease. J Drug Delivery Sci Technol,61:102176.
68. Sánchez-López E, Ettcheto M, Egea MA, et al (2018). Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. J Nanobiotechnolgy, 16 (1):32.
69. Wang ZB, Wang ZT, Sun Y, Tan L, Yu JT (2022). The future of stem cell therapies of Alzheimer’s disease. Ageing Res Rev, 80:101655.
70. Ortega A, Chernicki B, Ou G, Parmar MS (2024). From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer’s Disease. Mol Neurobiol, 62(1):1112-1135.
71. Bhatt A, Bhardwaj H, Srivastava P (2024). Mesenchymal stem cell therapy for Alzheimer’s disease: A novel therapeutic approach for neurodegenerative diseases. Neurosci,555:52-68.
72. Ataei B, Hokmabadi M, Asadi S, et al (2024). A review of the advances, insights, and prospects of gene therapy for Alzheimer’s disease: A novel target for therapeutic medicine. Gene,912:148368.
Files
IssueVol 54 No 7 (2025) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijph.v54i7.19146
Keywords
Alzheimer's disease Molecular basis Regenerative medicine Treatment

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Shojapour M, Asgharzade S. Regenerative Medicine in the Treatment of Alzheimer’s Disease: A Narrative Review. Iran J Public Health. 2025;54(7):1399-1410.