Review Article

Association of the RET Intronic Variant rs2435357 on Hirschsprung’s Disease Susceptibility: A Systematic Review and Meta-Analysis

Abstract

Background: Hirschsprung disease (HSCR) is a congenital life-threatening intestinal disorder characterized by the absence of nerves in the myenteric and submucosal plexuses in the distal bowel. There are several studies on the association of rs2435357 polymorphism in the proto-oncogene RET gene and HSCR susceptibility. However, some of the results remain controversial. Therefore, we conducted this updated meta-analysis to estimate the association of this polymorphism and HSCR risk.
Methods: We searched PubMed, Scopus, Web of Science and Google Scholar according to PRISMA guidelines to assess the association of RET rs2435357 with HSCR up to Jan 2024. We included case-control/cohort studies to perform meta-analysis conducted using genotype models. Odd ratios (ORs) with 95%CI were utilized to determine the susceptibility to HSCR. Q-test and I2 were used to evaluate heterogeneity, and Egger’s/ Begg’s tests were used to assess publication bias.

Results: Overall, 89 eligible studies meeting the inclusion criteria were retrieved with 2690 cases and 5408 controls from online databases. Finally, 17 studies were used for meta-analysis. RET rs2435357 showed a statistically significant association with HSCR under allelic model (OR = 4.50, 95%CI: 3.78-5.36, P<0.05), additive model (OR=2.02, 95%CI: 1.54-2.63, P<0.05), recessive model (OR=4.39, 95%CI: 3.33-5.78, P<0.05) and dominant model (OR=8.66, 95%CI: 6.96-10.76, P<0.05).
Conclusion: The polymorphism rs2435357 in RET gene provides substantial susceptibility in all inheritance models and to HSCR. However, more research is needed to clarify its specific role in prognosis and the interaction with other genetic and environmental factors affecting HSCR.

1. Montalva L, Cheng LS, Kapur R, et al (2023). Hirschsprung disease. Nat Rev Dis Primers, 9 (1):54.
2. Huizer V, Wijekoon N, Roorda D, et al (2022). Generic and disease-specific health-related quality of life in patients with Hirschsprung disease: A systematic review and meta-analysis. World J Gastroenterol, 28 (13):1362-1376.
3. Jiang M, Li C, Cao G, et al (2017). Effects of NRG1 Polymorphisms on Hirschsprung's Disease Susceptibility: A Meta-analysis. Sci Rep, 7 (1):9913.
4. Karim A, Tang CS, Tam PK (2021). The Emerging Genetic Landscape of Hirschsprung Disease and Its Potential Clinical Applications. Front Pediatr, 9:638093.
5. Doodnath R, Puri P (2010). A systematic review and meta-analysis of Hirschsprung's disease presenting after childhood. Pediatr Surg Int, 26 (11):1107-10.
6. Borrego S, Ruiz-Ferrer M, Fernández RM, Antiñolo G (2013). Hirschsprung's disease as a model of complex genetic etiology. Histol Histopathol, 28 (9):1117-36.
7. Amiel J, Lyonnet S (2001). Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet, 38 (11):729-39.
8. Alves MM, Sribudiani Y, Brouwer RW, et al (2013). Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev Biol, 382 (1):320-9.
9. Bhattarai C, Poudel PP, Ghosh A, Kalthur SG (2022). The RET gene encodes RET protein, which triggers intracellular signaling pathways for enteric neurogenesis, and RET mutation results in Hirschsprung's disease. AIMS Neurosci, 9 (1):128-149.
10. Amooee A, Lookzadeh MH, Mirjalili SR, et al (2019). Association of rs2435357 and rs1800858 polymorphisms in Ret Proto-Oncogene with hirschsprung disease: systematic review and meta-analysis. Arq Bras Cir Dig, 32 (3):e1448.
11. Wang Y, Jiang Q, Cai H, et al (2020). Genetic variants in RET, ARHGEF3 and CTNNAL1, and relevant interaction networks, contribute to the risk of Hirschsprung disease. Aging (Albany NY), 12 (5):4379-4393.
12. Yang D, Yang J, Li S, et al (2017). Effects of RET, NRG1 and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. Sci Rep, 7:43222.
13. Zhang XN, Zhou MN, Qiu YQ, et al (2007). Genetic analysis of RET, EDNRB, and EDN3 genes and three SNPs in MCS + 9.7 in Chinese Patients with isolated Hirschsprung disease. Biochem Genet, 45 (7-8):523-7.
14. Miao X, Leon TY, Ngan ES, et al (2010). Reduced RET expression in gut tissue of individuals carrying risk alleles of Hirschsprung's disease. Hum Mol Genet, 19 (8):1461-7.
15. Zhang Z, Jiang Q, Li Q, et al (2015). Genotyping analysis of 3 RET polymorphisms demonstrates low somatic mutation rate in Chinese Hirschsprung disease patients. Int J Clin Exp Pathol, 8 (5):5528-34.
16. Li Q, Zhang Z, Diao M, et al (2017). Cumulative Risk Impact of RET, SEMA3, and NRG1 Polymorphisms Associated With Hirschsprung Disease in Han Chinese. J Pediatr Gastroenterol Nutr, 64 (3):385-390.
17. Eadyow K, Phusantisampan T, Maneechay W, Sangkhathat SJSJST (2020). Genetic polymorphisms of the SOX10 gene in Thai patients with sporadic Hirschsprung disease. Songklanakarin J Sci Technol, 42 (3):596-601.
18. Phusantisampan T, Sangkhathat S, Phongdara A, et al (2012). Association of genetic polymorphisms in the RET-protooncogene and NRG1 with Hirschsprung disease in Thai patients. J Hum Genet, 57 (5):286-293.
19. Gunadi, Dwihantoro A, Iskandar K, Makhmudi A, Rochadi (2016). Accuracy of polymerase chain reaction-restriction fragment length polymorphism for RET rs2435357 genotyping as Hirschsprung risk. J Surg Res, 203 (1):91-4.
20. Gunadi, Kapoor A, Ling AY, et al (2014). Effects of RET and NRG1 polymorphisms in Indonesian patients with Hirschsprung disease. J Pediatr Surg, 49 (11):1614-8.
21. Iskandar K, Simanjaya S, Indrawan T, et al (2022). Is There Any Mosaicism in REarranged During Transfection Variant in Hirschsprung Disease's Patients? Front Pediatr, 10:842820.
22. Iwashita T, Kurokawa K, Qiao S, et al (2001). Functional analysis of RET with Hirschsprung mutations affecting its kinase domain. Gastroenterology, 121 (1):24-33.
23. Burzynski GM, Nolte IM, Bronda A, et al (2005). Identifying candidate Hirschsprung disease-associated RET variants. Am J Hum Genet, 76 (5):850-8.
24. Emison ES, Garcia-Barcelo M, Grice EA, et al (2010). Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet, 87 (1):60-74.
25. Liang CM, Ji DM, Yuan X, et al (2014). RET and PHOX2B genetic polymorphisms and Hirschsprung's disease susceptibility: a meta-analysis. PLoS One, 9 (3):e90091.
26. Mu J, Zhang Y, Liao G, et al (2022). Association of rs2435357 and rs2506030 polymorphisms in RET with susceptibility to hirschsprung disease: A systematic review and meta-analysis. Front Pediatr, 10:1030933.
27. Kapoor A, Jiang Q, Chatterjee S, et al (2015). Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 susceptibility polymorphisms. Hum Mol Genet, 24 (10):2997-3003.
28. Virtanen VB, Salo PP, Cao J, et al (2019). Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet, 62 (4):229-234.
29. Carter TC, Kay DM, Browne ML, et al (2012). Hirschsprung's disease and variants in genes that regulate enteric neural crest cell proliferation, migration and differentiation. J Hum Genet, 57 (8):485-93.
30. Chatterjee S, Kapoor A, Akiyama JA, et al (2016). Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease. Cell, 167 (2):355-368.e10.
Files
IssueVol 54 No 3 (2025) QRcode
SectionReview Article(s)
Keywords
Hirschsprung disease (HSCR) Polymorphism Rs2435357 Meta-analysis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Bahreini F, Mahdavinezhad A, Eghbali M. Association of the RET Intronic Variant rs2435357 on Hirschsprung’s Disease Susceptibility: A Systematic Review and Meta-Analysis. Iran J Public Health. 2025;54(3):567-577.