Original Article

Biodegradation of Polystyrene Paper Using Chewing Insects

Abstract

Background: Plastic pollution, particularly from polystyrene, has emerged as a serious environmental concern, prompting growing interest in its biodegradation. We investigated the potential of four chewing insects; mealworm (Tenebrio molitor), superworm (Zophobas morio), American cockroach (Periplaneta americana), and cricket (Gryllus bimaculatus) to biodegrade polystyrene paper (PSP).
Methods: Using a randomized complete block design, four chewing insects were divided into two groups after 48-hour fasting with water. One group received PSP only; the other received PSP mixed with tapioca starch. Weight loss of PSP was recorded after 72 hours.
Results: Z. morio demonstrated the highest degradation efficiency for PSP (92.10%), followed by P. americana (32.17%). When tapioca starch was added, Z. morio remained the highest effective (95.45%), followed by T. molitor (59.15%). Supplementing starch significantly enhanced degradation rates (P < 0.05). Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) revealed signs of depolymerization, oxidation, and surface cracking. FTIR indicated new functional groups of carbonyl (C=O, 1650 cm⁻¹) and hydroxyl (O–H, 3200–3550 and 3584–3700 cm⁻¹).
Conclusion: Certain chewing insects, especially Z. morio and T. molitor, possess strong potential for PSP degradation, likely aided by their gut microbiota. Notably, this study is the first to report PSP degradation by P. americana and G. bimaculatus. Further research is needed to explore the microbial mechanisms within insect guts that facilitate plastic biodegradation.

1. De Smet M (2017). The New Plastics Economy—Rethinking the Future of Plastics & Catalysing Action. Ellen MacArthur Foundation: Cowes, Isle of Wight, UK.
2. Plastics Europe (2022). Plastics—The Facts 2022: An Analysis of European Plastics Pro-duction, Demand and Waste Data. Brussels, Belgium. (available at: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/)
3. Geyer R, Jambeck JR, Law KL (2017). Pro-duction, use, and fate of all plastics ever made. Sci Adv, 3 (7): e1700782.
4. Song G, Zhang H, Duan H, et al (2018). Packaging waste from food delivery in China’s mega cities. Resour Conserv Recycl, 130: 226-27.
5. PlasticsEurope (2016). The plastic transitions. Brussels, Belgium. (available at: https://plasticseurope.org/changingplasticsforgood/the-plastics-transition/)
6. Zhou Y, Wang J, Zou M, et al (2020). Mi-croplastics in soils: A review of meth-ods, occurrence, fate, transport, ecologi-cal and environmental risks. Sci Total Environ, 748: 141368.
7. Hidalgo-Ruz V, Gutow L, Thompson RC, et al (2012). Microplastics in the marine environment: a review of the methods used for identification and quantifica-tion. Environ Sci Technol, 46 (6): 3060–3075.
8. Wu WM, Yang J, Criddle CS (2017). Micro-plastics pollution and reduction strate-gies. Front Environ Sci Eng, 11 (6): 1-4.
9. Muhdhar MH, Sumberartha IW, Hassan Z, et al (2021). Examination of microplastic particles in reef fish food in Ternate Is-land waters, Indonesia. Jordan J Biol Sci, 14 (4): 853-8.
10. Cherubini F, Bargigli S, Ulgiati S (2008). Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy. Waste Manag, 28 (12): 2552-2564.
11. Jambeck JR, Geyer R, Wilcox C, et al (2015). Plastic waste inputs from land in-to the ocean. Science, 347 (6223): 768-771.
12. Barnes DK, Galgani F, Thompson RC, et al (2009). Accumulation and fragmenta-tion of plastic debris in global envi-ronments. Philos Trans R Soc Lond B Biol Sci, 364(1526): 1985–1998.
13. Gu JD, Ford TE, Mitton DB, et al (2000). Microbial corrosion of metals in The Uhlig Corrosion Handbook. 2nd Edition. New York: Wiley, pp 915-927.
14. Paul D, Pandey G, Pandey J, et al (2005). Accessing microbial diversity for bio-remediation and environmental restora-tion. Trends Biotechnol, 23 (3):135-42.
15. Bher A, Mayekar PC, Auras RA, et al (2022). Biodegradation of Biodegradable Pol-ymers in Mesophilic Aerobic Environ-ments. Int J Mol Sci, 23 (20):12165.
16. Krueger MC, Harms H, Schlosser D (2015). Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol, 99 (21): 8857-8874.
17. Yang Y, Yang J, Wu WM, et al (2015). Bio-degradation and mineralization of poly-styrene by plastic-eating mealworms: Part 1 Chemical and physical character-ization and isotopic tests. Environ Sci Technol, 49 (20): 12080-12086.
18. Yang Y, Yang J, Wu WM, et al (2015). Bio-degradation and mineralization of poly-styrene by plastic-eating mealworms: part 2 Role of gut microorganisms. Envi-ron Sci Technol, 49 (20): 12087-12093.
19. Woo S, Song I, Cha HJ (2020). Fast and fac-ile biodegradation of polystyrene by the gut microbial flora of Plesiophthalmus da-vidis larvae. Appl Environ Microbiol, 86 (18): e01361-20.
20. Iwamoto A, Tokiwa Y (1994). Enzymatic degradation of plastics containing poly-caprolactone. Polym Degrad Stab, 45 (2): 205-213.
21. Kim HR, Lee HM, Yu HC, et al (2020). Bio-degradation of polystyrene by Pseudomo-nas sp. isolated from the gut of super-worms (larvae of Zophobas atratus). Envi-ron Sci Technol, 54 (11): 6987-6996.
22. Peng BY, Li Y, Fan R, et al (2020). Biodeg-radation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Te-nebrionidae): Broad and limited extent depolymerization. Environ Pollut, 266 (Pt 1): 115206.
23. Schmidt J, Wei R, Oeser T, et al (2017). Degradation of polyester polyurethane by bacterial polyester hydrolases. Poly-mers (Basel), 9 (2): 65.
24. Yang Y, Wang J, Xia M (2020). Biodegrada-tion and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ, 708: 135233.
25. Lauprasert P, Sitthicharoenchai D, Thirakhupt K, et al (2006). Food prefer-ence and feeding behavior of the Ger-man cockroach, Blattella germanica (Lin-naeus). J Sci Res Chula Univ, 31 (2): 121-126.
26. Pan L, Gu JG, Yin B, et al (2009). Contribu-tion to deterioration of polymeric mate-rials by a slow-growing bacterium Nocar-dia corynebacterioides. Int Biodeterior Bio-degrad, 63 (1): 24-29.
27. Roch S, Brinker A (2017). Rapid and effi-cient method for the detection of mi-croplastic in the gastrointestinal tract of fishes. Environ Sci Technol, 51 (8): 4522-4530.
28. Yang L, Gao J, Liu Y, et al (2021). Biodeg-radation of expanded polystyrene and low-density polyethylene foams in lar-vae of Tenebrio molitor Linnaeus (Coleop-tera: Tenebrionidae): Broad versus lim-ited extent depolymerization and mi-crobe-dependence versus independence. Chemosphere, 262: 127818.
29. Khan S, Dong Y, Nadir S, et al (2021). Val-orizing plastic waste by insect consump-tion. Circular Agricultural Systems,1 (7): 1-9.
30. Ojha N, Pradhan N, Singh S, et al (2017). Evaluation of HDPE and LDPE degra-dation by fungus, implemented by statis-tical optimization. Sci Rep,7: 39515.
31. Pushpadass HA, Weber RW, Dumais JJ, et al (2010). Biodegradation characteristics of starch–polystyrene loose-fill foams in a composting medium. Bioresour Technol, 101 (19): 7258-7264.
32. Restrepo-Flórez JM, Bassi A, Thompson MR (2014). Microbial degradation and deterioration of polyethylene–A review. Int Biodeterior Biodegrad, 88: 83-90.
33. Chen G, Chen X, Yue PL (2000). Electro-coagulation and electroflotation of res-taurant wastewater. J Environ Eng, 126 (9): 858-863.
Files
IssueVol 54 No 10 (2025) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijph.v54i10.20141
Keywords
Biodegradation Polystyrene Plastic Chewing insects

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sukmanee P, Somdee T, Tawatsin A, Lauprasert P. Biodegradation of Polystyrene Paper Using Chewing Insects. Iran J Public Health. 2025;54(10):2233-2241.