Review Article

Preeclampsia: Etiology, Pathophysiology, Risk Factors, Impact and Prevention: A Narrative Review

Abstract

Background: Preeclampsia (PE) caused 30%-40% of maternal and newborn deaths worldwide. Despite unclear exact cause, strategies exist to mitigate less severe PE effects. This review explores PE etiology, pathophysiology, risk factors, impact, and prevention.
Methods: Searching Scopus, PubMed, ProQuest, Google Scholar, and Science Direct for “preeclampsia and pregnancy” and “prevention” yielded 2012–2022 articles.
Results: Preeclampsia features abnormal placental changes, altered immunity response, trophoblast apoptosis, and reduced uterine perfusion. Risk factors include hypertension history, nulliparity, age over 40, BMI over 35 kg/m², family history, amniotic pregnancy, and long pregnancy interval. This condition risks cardiovascular and neonatal morbidity, straining health resources. Prevention involves aspirin, vitamin D, exercise, folic acid, diet, early screening, and antenatal care.
Conclusion: Findings emphasize enhancing health literacy and preeclampsia education in prenatal care to mitigate PE risk among women. Further research, novel therapies, and assessing prevention strategies with accessible educational materials and multidisciplinary approaches are warranted to enhance pregnant women's health literacy and decrease PE risk.

1. Mukosha M, Vwalika B, Lubeya MK, et al (2022). Determinants and neonatal outcomes of preeclampsia among women living with and without HIV at a tertiary hospital in Zambia: a review of medical records. Pan Afr Med J, 43: 110.
2. Mazloomi S, Khodadadi I, Alimohammadi S, et al (2021). Correlation of thioredoxin reductase (TrxR) and nitric oxide synthase (NOS) activities with serum trace elements in preeclampsia. Clin Exp Hypertens, 43(2): 120–4.
3. Rezai H, Ahmad S, Alzahrani FA, et al (2021). MZe786, a hydrogen sulfide-releasing aspirin prevents preeclampsia in heme oxygenase-1 haplodeficient pregnancy under high soluble flt-1 environment. Redox Biol, 38: 101768.
4. Chappell LC, Brocklehurst P, Green ME, et al (2019). Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet, 394 (10204): 1181–90.
5. Ortved D, Hawkins TLA, Johnson JA, et al (2019). Cost-effectiveness of first-trimester screening with early preventative use of aspirin in women at high risk of early-onset pre-eclampsia. Ultrasound Obstet Gynecol, 53(2) : 239–44.
6. Jhee JH, Lee S, Park Y, et al (2019). Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One, 14 (8): e0221202.
7. MacDonald EJ, Lepine S, Pledger M, et al (2019). Pre‐eclampsia causing severe maternal morbidity – A national retrospective review of preventability and opportunities for improved care. Aust N Z J Obstet Gynaecol , 59(6): 825–30.
8. Tsigas EZ (2022). The Preeclampsia Foundation: the voice and views of the patient and her family. Am J Obstet Gynecol, 226 (2S): S1254-S1264.e1.
9. Osungbade KO, Ige OK (2011). Public Health Perspectives of Preeclampsia in Developing Countries: Implication for Health System Strengthening. J Pregnancy, 2011:481095.
10. Fox R, Kitt J, Leeson P, et al (2019). Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J Clin Med, 8(10): 1625.
11. Stitterich N, Shepherd J, Koroma MM, et al (2021). Risk factors for preeclampsia and eclampsia at a main referral maternity hospital in Freetown, Sierra Leone: a case-control study. BMC Pregnancy Childbirth, 21(1): 413.
12. Duhig KE, Myers J, Seed PT, et al (2019). Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet, 393 (10183): 1807–18.
13. Inno R, Kikas T, Lillepea K, et al (2021). Coordinated Expressional Landscape of the Human Placental miRNome and Transcriptome. Front Cell Dev Biol, 9: 697947.
14. Wainstock T, Sergienko R, Sheiner E (2020). Who Is at Risk for Preeclampsia? Risk Factors for Developing Initial Preeclampsia in a Subsequent Pregnancy. J Clin Med, 9 (4): 1103.
15. Burton GJ, Redman CW, Roberts JM, et al (2019). Pre-eclampsia: pathophysiology and clinical implications. BMJ, 366:l2381.
16. Ghorbannejad S, MehdizadehTourzani Z, Kabir K, et al (2022). The effectiveness of Jacobson’s progressive muscle relaxation technique on maternal, fetal and neonatal outcomes in women with non-severe preeclampsia: a randomized clinical trial. Heliyon, 8 (6): e09709.
17. Rana S, Burke SD, Karumanchi SA (2022). Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol, 226 (2S): S1019–S1034.
18. Awamleh Z, Gloor GB, Han VKM (2019). Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology. BMC Med Genomics, 12 (1): 91.
19. Dugalic S, Petronijevic M, Stefanovic A, et al (2019). Comparison of 2 approaches in management of pregnant women with inherited trombophilias: Prospective analytical cohort study. Medicine (Baltimore), 98 (34): e16883.
20. Lane SL, Doyle AS, Bales ES, et al (2020). Increased uterine artery blood flow in hypoxic murine pregnancy is not sufficient to prevent fetal growth restriction. Biol Reprod, 102 (3): 660–70.
21. Kristensen JH, Basit S, Wohlfahrt J, et al (2019). Pre-eclampsia and risk of later kidney disease: Nationwide cohort study. BMJ, 365: l1516.
22. Than NG, Posta M, Györffy D, et al (2022). Early pathways, biomarkers, and four distinct molecular subclasses of preeclampsia: The intersection of clinical, pathological, and high-dimensional biology studies. Placenta, 125: 10–19.
23. Steinthorsdottir V, McGinnis R, Williams NO, et al (2020). Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat Commun, 11 (1): 5976.
24. Hu XH, Li ZH, Muyayal KP (2022). A newly intervention strategy in preeclampsia: Targeting PD‐1/Tim‐3 signaling pathways to modulate the polarization of decidual macrophages. FASEB J, 36(1):e22073..
25. Aggarwal R, Jain AK, Mittal P, et al (2019). Association of pro- and anti-inflammatory cytokines in preeclampsia. J Clin Lab Anal, 33 (4): e22834.
26. Shraga Y, Pariente G, Rotem R, et al (2020). Changes in trends over time for the specific contribution of different risk factors for pre-eclampsia. Arch Gynecol Obstet, 302 (4): 977–82.
27. Lv LJ, Li SH, Li SC, et al (2019). Early-Onset Preeclampsia Is Associated With Gut Microbial Alterations in Antepartum and Postpartum Women. Front Cell Infect Microbiol, 9: 224.
28. Christoforaki V, Zafeiriou Z, Daskalakis G, et al (2020). First trimester neutrophil to lymphocyte ratio (NLR) and pregnancy outcome. J Obstet Gynaecol, 40 (1): 59–64.
29. Rana S, Lemoine E, Granger J, et al (2019). Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res, 124 (7): 1094–112.
30. Saif J, Ahmad S, Rezai H, Litvinova K, et al (2021). Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol, 38:101814.
31. Cerdeira AS, O’Sullivan J, Ohuma EO, et al (2019). Randomized Interventional Study on Prediction of Preeclampsia/Eclampsia in Women with Suspected Preeclampsia: INSPIRE. Hypertension, 74 (4): 983–90.
32. Brownfoot FC, Hannan NJ, Cannon P, et al (2019). Sulfasalazine reduces placental secretion of antiangiogenic factors, up-regulates the secretion of placental growth factor and rescues endothelial dysfunction. EBioMedicine, 41: 636–48.
33. Saleh L, Verdonk K, Visser W, et al (2016). The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia., Ther Adv Cardiovasc Dis, 10 (5): 282–93.
34. Harris LK, Benagiano M, D’Elios MM, Brosens I, Benagiano G (2019). Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol, 221(5):457–69.
35. Tamanna S, Clifton VL, Rae K, et al (2020). Angiotensin Converting Enzyme 2 (ACE2) in Pregnancy: Preeclampsia and Small for Gestational Age. Front Physiol, 11:590787.
36. Li JH, Wang LL, Liu H, et al (2019). Galectin-9 alleviates LPS-induced preeclampsia-like impairment in rats via switching decidual macrophage polarization to M2 subtype. Front Immunol, 9: 3142.
37. Negi M, Mulla MJ, Han CS, et al (2020). Allopurinol inhibits excess glucose-induced trophoblast IL-1β and ROS production. Reproduction, 159 (1): 73–80.
38. Chantanahom N, Phupong V (2021). Clinical risk factors for preeclampsia in twin pregnancies. Laganà AS, editor. PLoS One, 16 (4): e0249555.
39. Ngwenya S, Jones B, Mwembe D, et al (2021). Determinants of eclampsia in women with severe preeclampsia at Mpilo Central Hospital, Bulawayo, Zimbabwe. Pregnancy Hypertens, 25: 235–9.
40. Sharma S, Goyal M, Kumar PK, et al (2019). Association of raised blood lead levels in pregnant women with preeclampsia: A study at tertiary centre. Taiwan J Obstet Gynecol, 58 (1): 60–3.
41. Robillard PY, Dekker G, Scioscia M, et al (2022). Progress in the understanding of the pathophysiology of immunologic maladaptation related to early-onset preeclampsia and metabolic syndrome related to late-onset preeclampsia. Am J Obstet Gynecol, 226 (2S): S867–75.
42. Mehta LS, Warnes CA, Bradley E, et al (2020). Cardiovascular Considerations in Caring for Pregnant Patients: A Scientific Statement from the American Heart Association. Circulation, 141 (23): e884–e903.
43. Brener A, Lewnard I, Mackinnon J, et al (2020). Missed opportunities to prevent cardiovascular disease in women with prior preeclampsia. BMC Womens Health, 20 (1): 217.
44. Honigberg MC, Zekavat SM, Aragam K, et al (2019). Long-Term Cardiovascular Risk in Women With Hypertension During Pregnancy. J Am Coll Cardiol, 74 (22): 2743–54.
45. Haug EB, Horn J, Markovitz AR, et al (2019). Association of Conventional Cardiovascular Risk Factors with Cardiovascular Disease after Hypertensive Disorders of Pregnancy: Analysis of the Nord-Trøndelag Health Study. JAMA Cardiol, 4 (7): 628–35.
46. Garovic VD, White WM, Vaughan L, et al (2020). Incidence and Long-Term Outcomes of Hypertensive Disorders of Pregnancy. J Am Coll Cardiol, 75 (18): 2323–34.
47. Riise HKR, Sulo G, Tell GS, Igland J, Egeland G, et al (2019). Hypertensive pregnancy disorders increase the risk of maternal cardiovascular disease after adjustment for cardiovascular risk factors. Int J Cardiol, 282: 81–87.
48. Almli I, Haugdahl HS, Sandsæter HL, et al (2020). Implementing a healthy postpartum lifestyle after gestational diabetes or preeclampsia: A qualitative study of the partner’s role. BMC Pregnancy Childbirth, 20 (1): 66.
49. Arnott C, Nelson M, Alfaro Ramirez M, et al (2020). Maternal cardiovascular risk after hypertensive disorder of pregnancy. Heart, 106 (24): 1927–33.
50. Suvakov S, Bonner E, Nikolic V, et al (2020). Overlapping pathogenic signalling pathways and biomarkers in preeclampsia and cardiovascular disease. Pregnancy Hypertens, 20: 131–6.
51. Stuart JJ, Tanz LJ, Rimm EB, et al (2022). Cardiovascular Risk Factors Mediate the Long-Term Maternal Risk Associated With Hypertensive Disorders of Pregnancy. J Am Coll Cardiol, 79 (19): 1901–13.
52. Easter SR, Cantonwine DE, Zera CA, et al (2016). Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia. Am J Obstet Gynecol, 214 (3): 387.e1-7.
53. Seely EW, Celi AC, Chausmer J, et al (2021). Cardiovascular health after preeclampsia: Patient and provider perspective. J Womens Health (Larchmt), 30 (3): 305–13.
54. Lu HQ, Hu R (2019). Lasting effects of intrauterine exposure to preeclampsia on offspring and the underlying mechanism. AJP Rep, 9 (3): e275–e291.
55. Thong EP, Ghelani DP, Manoleehakul P, et al (2022). Optimising Cardiometabolic Risk Factors in Pregnancy: A Review of Risk Prediction Models Targeting Gestational Diabetes and Hypertensive Disorders. J Cardiovasc Dev Dis, 9 (2): 55.
56. Markovitz AR, Stuart JJ, Horn J, Williams PL, et al (2019). Does pregnancy complication history improve cardiovascular disease risk prediction? Findings from the HUNT study in Norway. Eur Heart J, 40 (14): 1113–20.
57. Waker CA, Kaufman MR, Brown TL (2021). Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol, 12: 681632.
58. Hu M, Eviston D, Hsu P, et al (2019). Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat Commun, 10(1):3031.

59. Mohammad NS, Nazli R, Zafar H, et al (2022). Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak J Med Sci, 38 (1): 219–26.
60. Vakil P, Henry A, Craig ME, et al (2022). A review of infant growth and psychomotor developmental outcomes after intrauterine exposure to preeclampsia. BMC Pediatr, 22 (1): 513.
61. Taglauer ES, Fernandez-Gonzalez A, Willis GR, et al (2022). Antenatal Mesenchymal Stromal Cell Extracellular Vesicle Therapy Prevents Preeclamptic Lung Injury in Mice. Am J Respir Cell Mol Biol, 66 (1): 86–95.
62. Luyckx VA, Brenner BM (2020). Clinical consequences of developmental programming of low nephron number. Anat Rec (Hoboken), 303 (10): 2613–31.
63. Hao J, Hassen D, Hao Q, et al (2019). Maternal and Infant Health Care Costs Related to Preeclampsia. Obstet Gynecol, 134 (6): 1227–33.
64. Dubon Garcia A, Devlieger R, Redekop K, et al (2021). Cost-utility of a first-trimester screening strategy versus the standard of care for nulliparous women to prevent pre-term pre-eclampsia in Belgium. Pregnancy Hypertens, 25: 219–24.
65. Stevens W, Shih T, Incerti D, et al (2017). Short-term costs of preeclampsia to the United States health care system. Am J Obstet Gynecol, 217 (3): 237-248.e16.
66. Mendoza M, Bonacina E, Garcia-Manau P, et al (2023). Aspirin Discontinuation at 24 to 28 Weeks’ Gestation in Pregnancies at High Risk of Preterm Preeclampsia: A Randomized Clinical Trial. JAMA, 329 (7): 542–50.
67. Hastie R, Tong S, Wikström AK, et al (2021). Aspirin use during pregnancy and the risk of bleeding complications: a Swedish population-based cohort study. Am J Obstet Gynecol, 224 (1): 95.e1-95.e12.
68. Clymer D, Kostadinov S, Catov J, et al (2020). Decidual Vasculopathy Identification in Whole Slide Images Using Multiresolution Hierarchical Convolutional Neural Networks. Am J Pathol, 190 (10): 2111–2122.
69. Atallah A, Lecarpentier E, Goffinet F, et al (2017). Aspirin for Prevention of Preeclampsia. Drugs, 77 (17): 1819–31.
70. Rolnik DL, Nicolaides KH, Poon LC (2022). Prevention of preeclampsia with aspirin. Am J Obstet Gynecol, 226 (2S): S1108–S1119.
71. Gu W, Lin J, Hou YY, et al (2020). Effects of low-dose aspirin on the prevention of preeclampsia and pregnancy outcomes: A randomized controlled trial from Shanghai, China. Eur J Obstet Gynecol Reprod Biol, 248: 156–63.
72. Hoffman MK, Goudar SS, Kodkany BS, et al (2020). Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial. Lancet, 395 (10220): 285–93.
73. Van Doorn R, Mukhtarova N, Flyke IP, et al (2021). Dose of aspirin to prevent preterm preeclampsia in women with moderate or high-risk factors: A systematic review and meta-analysis. PLoS One, 16 (3): e0247782.
74. Wang Y, Guo X, Obore N, et al (2022). Aspirin for the prevention of preeclampsia: A systematic review and meta-analysis of randomized controlled studies. Front Cardiovasc Med, 9: 936560.
75. Cyprian F, Lefkou E, Varoudi K, et al (2019). Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond. Front Immunol, 10: 2739
76. Poniedziałek-Czajkowska E, Mierzyński R (2021). Could Vitamin D Be Effective in Prevention of Preeclampsia? Nutrients, 13 (11): 3854.
77. Fogacci S, Fogacci F, Banach M, et al (2020). Vitamin D supplementation and incident preeclampsia: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr, 39 6): 1742–52.
78. Fu Z mei, Ma Z zhi, Liu G jie, et al (2018). Vitamins supplementation affects the onset of preeclampsia. J Formos Med Assoc, 117 (1): 6–13.
79. Palacios C, Kostiuk LK, Peña-Rosas JP (2019). Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. Cochrane Database Syst Rev, 7(7):CD008873.
80. Wang Y, Wu N, Shen H (2021). A Review of Research Progress of Pregnancy with Twins with Preeclampsia. Risk Manag Healthc Policy, 14:1999–2010.
81. Danielli M, Gillies C, Thomas RC, et al (2022). Effects of Supervised Exercise on the Development of Hypertensive Disorders of Pregnancy: A Systematic Review and Meta-Analysis. J Clin Med, 11 (3): 793.
82. Zheng L, Huang J, Kong H, et al (2020). The effect of folic acid throughout pregnancy among pregnant women at high risk of pre-eclampsia: A randomized clinical trial. Pregnancy Hypertens, 19: 253–8.
83. Sun L, Niu Z (2020). A mushroom diet reduced the risk of pregnancy-induced hypertension and macrosomia: A randomized clinical trial. Food Nutr Res, 64: 10.29219/fnr.v64.4451.
84. Royani I, As’ad S, Mappaware NA, et al (2019). Effect of Ajwa Dates Consumption to Inhibit the Progression of Preeclampsia Threats on Mean Arterial Pressure and Roll-Over Test. Biomed Res Int, 2019: 2917895.
85. Irianti E, Ilyas S, Hutahaean S, et al (2020). Placental histological on preeclamptic rats (Rattus norvegicus) after administration of nanoherbal haramonting (Rhodomyrtus tomentosa). Research J Pharm Tech, 13 (8): 3879–82.
86. Magee LA, Smith GN, Bloch C, et al (2022). Guideline No. 426: Hypertensive Disorders of Pregnancy: Diagnosis, Prediction, Prevention, and Management. J Obstet Gynaecol Can, 44(5):547-571.e1.
87. Demissie Beketie E, Tesfaye Tafese W, Zeleke Shiferaw B, et al (2022). Determinants of preeclampsia among mothers attending perinatal care in Gurage zone public hospitals, Ethiopia, matched case control study. Int J Afr Nurs Sci, 17: 100453.
88. Mateus J, Newman R, Sibai B, Li Q, et al (2017). Massive Urinary Protein Excretion Associated with Greater Neonatal Risk in Preeclampsia. AJP Rep, 7 (1): e49–58.
89. Lei T, Qiu T, Liao W, et al (2021). Proteinuria may be an indicator of adverse pregnancy outcomes in patients with preeclampsia: a retrospective study. Reprod Biol Endocrinol, 19 (1): 71.
90. Belay AS, Wudad T (2019). Prevalence and associated factors of pre-eclampsia among pregnant women attending anti-natal care at Mettu Karl referal hospital, Ethiopia: Cross-sectional study. Clin Hypertens, 25: 14.
91. Mou AD, Barman Z, Hasan M, et al (2021). Prevalence of preeclampsia and the associated risk factors among pregnant women in Bangladesh. Sci Rep, 11 (1): 21339.
92. Nagraj S, Hinton L, Praveen D, et al (2019). Women’s and healthcare providers’ perceptions of long-term complications associated with hypertension and diabetes in pregnancy: a qualitative study. BJOG, 126 Suppl 4(Suppl Suppl 4):34-42.
Files
IssueVol 53 No 11 (2024) QRcode
SectionReview Article(s)
Keywords
Preeclampsia Etiology Risk factor Impact Prevention

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mustary M, . A, Syam A, Riskiyani S, Ayu Erika K, Indarty Moedjiono A, Lubis M. Preeclampsia: Etiology, Pathophysiology, Risk Factors, Impact and Prevention: A Narrative Review. Iran J Public Health. 2024;53(11):2392-2403.