Review Article

The Diagnostic Performance of 68Ga-PSMA-11 PET/MRI for the Biochemically Recurrent Prostate Cancer: A Systematic Review and Meta-analysis

Abstract

Background: Our meta-analysis aimed to evaluate the diagnostic performance of 68Ga-PSMA-11 PET/MRI for biochemical recurrence of prostate cancer.

Methods: We systematically and comprehensively searched all available studies until May 2023 in the PubMed and Embase databases. Studies evaluating 68Ga-PSMA-11 PET/MRI in men with prostate cancer biochemical recurrence were included. We appraised the quality of studies using a tailored Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. For each meta-analysis, we used the DerSimonian and Laird method. We first transformed proportions with the Freeman-Tukey double arcsine transformation, and then confidence intervals were calculated using the Jackson method. Meta-regression and sensitivity analysis were conducted to explore heterogeneity sources. Furthermore, we conducted subgroup analysis according to the PSA levels.

Results: Overall, 13 studies with 738 patients were included in the analysis. The pooled overall detection rates of 68Ga-PSMA-11 PET/MRI in detecting recurrent PCa after definitive treatment were 74% (95% CI, 68%-79%). For patients with PSA under 0.5 ng/mL, the detection rate was 55 %. The detection rates were 79 %, 76 % and 87 % for the subgroup PSA levels of 0.5−0.99, 1.0–1.99 and over 2.0 ng/mL.

Conclusion: 68Ga-PSMA-11 PET/MRI has a good detection rate for biochemical recurrence of prostate cancer. However, large sample, multi-center studies are still needed to verify and expand on our conclusion.

1. King L, Bernaitis N, Christie D, et al (2022). Drivers of Radioresistance in Prostate Cancer. J Clin Med, 11 (19): 5637.
2. Akhoundova D, Feng FY, Pritchard CC, et al (2022). Molecular Genetics of Prostate Cancer and Role of Genomic Testing. Surg Pathol Clin, 15 (4):617-628.
3. Giampietri C, Scatozza F, Crecca E, et al (2022). Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies. J Transl Med, 20 (1):467.
4. Kim WT, Kim J, Kim WJ (2022). How can we best manage biochemical failure after radical prostatectomy? Investig Clin Urol, 63 (6):592-601.
5. Bögemann M, Shore ND, Smith MR, et al (2023). Efficacy and Safety of Darolutamide in Patients with Nonmetastatic Castration-resistant Prostate Cancer Stratified by Prostate-specific Antigen Doubling Time: Planned Subgroup Analysis of the Phase 3 ARAMIS Trial. Eur Urol. 83(3):212-221.
6. Pfister D, Nestler T, Hartmann F, et al (2022). Feasibility and Oncologic Outcome of Salvage Surgery in Isolated Seminal Vesicle Remnants after Radical Prostatectomy. Urol Int, 106 (1):44-50.
7. Paller CJ, Antonarakis ES (2013). Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clin Adv Hematol Oncol, 11 (1):14-23.
8. Hsieh PF, Chang TY, Lin WC, et al (2022). A comparative study of transperineal software-assisted magnetic resonance/ultrasound fusion biopsy and transrectal cognitive fusion biopsy of the prostate. BMC Urol, 22 (1):72.
9. Levin BA, Lama DJ, Sussman J, et al (2022). Does the type of biopsy used for diagnosis impact subsequent treatment selection in prostate cancer patients? Aging Male, 25 (1):23-28.
10. Singh S, Rogers H, Kanber B, et al (2022). Avoiding Unnecessary Biopsy after Multiparametric Prostate MRI with VERDICT Analysis: The INNOVATE Study. Radiology, 305 (3):623-630.
11. Alver KH, Yagci AB, Utebey AR, et al (2022). Comparison of Multiparametric and Fast MRI Protocols in Detecting Clinically Significant Prostate Cancer and a Detailed Cost Analysis. J Magn Reson Imaging, 56 (5):1437-1447.
12. Keenan KE, Delfino JG, Jordanova KV, et al (2022). Challenges in ensuring the generalizability of image quantitation methods for MRI. Med Phys, 49 (4):2820-2835.
13. Rahmim A, Lodge MA, Karakatsanis NA, et al (2019). Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging, 46 (2):501-518.
14. Spohn SKB, Farolfi A, Schandeler S, et al (2022). The maximum standardized uptake value in patients with recurrent or persistent prostate cancer after radical prostatectomy and PSMA-PET-guided salvage radiotherapy-a multicenter retrospective analysis. Eur J Nucl Med Mol Imaging, 50 (1):218-227.
15. Pomykala KL, Herrmann K, Lalumera E, et al (2023). Positive Prostate-specific Membrane Antigen Findings: How To Interpret Them. Eur Urol Oncol, 6(2):113-115.
16. Zang S, Ai S, Yang R, et al (2022). Development and validation of 68Ga-PSMA-11 PET/CT-based radiomics model to detect primary prostate cancer. EJNMMI Res, 12 (1):63.
17. Liberati A, Altman DG, Tetzlaff J, et al (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med, 6 (7):e1000100.
18. Whiting PF, Rutjes AW, Westwood ME, et al (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 155 (8):529-36.
19. Guberina N, Hetkamp P, Ruebben H, et al (2020). Whole-body integrated [68Ga]PSMA-11-PET/MR imaging in patients with recurrent prostate cancer: comparison with whole-body PET/CT as the standard of reference. Mol Imaging Biol, 22 (3):788-796.
20. Jentjens S, Mai C, Ahmadi Bidakhvidi N, et al (2022). Prospective comparison of simultaneous [68Ga]Ga-PSMA-11 PET/MR versus PET/CT in patients with biochemically recurrent prostate cancer. Eur Radiol, 32 (2):901-911.
21. Joshi A, Roberts MJ, Perera M, et al (2020). The clinical efficacy of PSMA PET/MRI in biochemically recurrent prostate cancer compared with standard of care imaging modalities and confirmatory histopathology: results of a single-centre, prospective clinical trial. Clin Exp Metastasis, 37 (4):551-560.
22. Kranzbühler B, Nagel H, Becker AS, et al (2018). Clinical performance of 68Ga-PSMA-11 PET/MRI for the detection of recurrent prostate cancer following radical prostatectomy. Eur J Nucl Med Mol Imaging, 45 (1):20-30.
23. Lake ST, Greene KL, Westphalen AC, et al (2017). Optimal MRI sequences for 68Ga-PSMA-11 PET/MRI in evaluation of biochemically recurrent prostate cancer. EJNMMI Res, 7 (1):77.
24. Lawhn-Heath C, Flavell RR, Behr SC, et al (2019). Single-center prospective evaluation of 68Ga-PSMA-11 PET in biochemical recurrence of prostate cancer. AJR Am J Roentgenol, 213 (2):266-274.
25. Lütje S, Cohnen J, Gomez B, et al (2017). Integrated 68Ga-HBED-CC-PSMA-PET/MRI in patients with suspected recurrent prostate cancer. Nuklearmedizin, 56 (3):73-81.
26. Mapelli P, Ghezzo S, Samanes Gajate AM, et al (2022). 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI in recurrent prostate cancer: diagnostic performance and association with clinical and histopathological data. Cancers (Basel), 14(2):334.
27. Martinez J, Subramanian K, Margolis D, et al (2022). 68Ga-PSMA-HBED-CC PET/MRI is superior to multiparametric magnetic resonance imaging in men with biochemical recurrent prostate cancer: A prospective single-institutional study. Transl Oncol, 15 (1):101242.
28. Baratto L, Song H, Duan H, et al (2021). PSMA- and GRPR-Targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med, 62 (11):1545-1549.
29. Burger IA, Müller J, Donati OF, et al (2019). 68Ga-PSMA-11 PET/MR detects local recurrence occult on mpMRI in prostate cancer patients after HIFU. J Nucl Med, 60 (8):1118-1123.
30. Maurer T, Beck V, Beer A, et al (2015). 928 contribution of PSMA-PET compared to morphological imaging with regard to detection rate in prostate cancer patients with biochemical recurrence after radical prostatectomy. Eur Urol Suppl, 2 (14):e928.
31. Maurer T, Beer A, Souvatzoglou M, et al (2014). 726 68Gallium-labelled ligand of prostate-specific membrane antigen (PSMA) for the evaluation of recurrent prostate cancer using PET/CT and PET/MR imaging. Eur Urol Suppl, 13 (1):e726.
32. Dyba T, Randi G, Bray F, et al (2021). The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur J Cancer, 157:308-347.
33. Saraji A, Duan K, Watermann C, et al (2022). The Gene Expression Landscape of Prostate Cancer BM Reveals Close Interaction with the Bone Microenvironment. Int J Mol Sci, 23 (21): 13029.
34. Cimadamore A, Scarpelli M, Raspollini MR, et al (2020). Prostate cancer pathology: What has changed in the last 5 years. Urologia, 87 (1):3-10.
35. Ferraro S, Biganzoli G, Bussetti M, et al (2022). Managing the impact of inter-method bias of prostate specific antigen assays on biopsy referral: the key to move towards precision health in prostate cancer management. Clin Chem Lab Med, 61 (1):142-153.
36. Bahler CD, Green MA, Tann MA, et al (2023). Assessing extra-prostatic extension for surgical guidance in prostate cancer: Comparing two PSMA-PET tracers with the standard-of-care. Urol Oncol, 41 (1):48.e1-48.e9.
37. Bass EJ, Ahmed HU (2023). Age-related PSA testing for prostate cancer: NICE recommendation 1.6.3. BJU Int, 131(1):130-131.
38. Wei C, Chen X, Ji J, et al (2023). UE-PSA is a non-invasive biomarker to detect prostate cancer: not only old wine in new bottles. Int J Cancer, 152(8):1719-1727.
39. Alley S, Jackson E, Olivié D, et al (2022). Effect of magnetic resonance imaging pre-processing on the performance of model-based prostate tumor probability mapping. Phys Med Biol, 67(24). 10.1088/1361-6560/ac99b4.
40. Wang Y, Tang Y, Gao X, et al (2022). Optimization of prostate cancer patient lymph node staging via the integration of neutrophil-lymphocyte ratios, platelet-lymphocyte ratios, and (68) Ga-PSMA-PET-derived SUVmax values. Prostate, 82 (15):1415-1421.
41. Hu X, Wu Y, Yang P, et al (2022). Performance of 68Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography in the diagnosis of primary prostate cancer: a systematic review and meta-analysis. Int Braz J Urol, 48 (6):891-902.
42. Haidar M, Abi-Ghanem AS, Moukaddam H, et al (2022). 68Ga-PSMA PET/CT in early relapsed prostate cancer patients after radical therapy. Sci Rep, 12 (1):20500.
43. Treglia G, Pereira Mestre R, Ferrari M, et al (2019). Radiolabelled choline versus PSMA PET/CT in prostate cancer restaging: a meta-analysis. Am J Nucl Med Mol Imaging, 9 (2):127-139.
44. Wang X, Wen Q, Zhang H, et al (2021). Head-to-Head Comparison of (68)Ga-PSMA-11 PET/CT and Multiparametric MRI for Pelvic Lymph Node Staging Prior to Radical Prostatectomy in Patients With Intermediate to High-Risk Prostate Cancer: A Meta-Analysis. Front Oncol, 11:737989.
45. Evangelista L, Maurer T, van der Poel H, et al (2022). [68Ga]Ga-PSMA versus [18F]PSMA positron emission tomography/computed tomography in the staging of primary and recurrent prostate cancer. A systematic review of the literature. Eur Urol Oncol, 5 (3):273-282.
46. Moradi F, Duan H, Song H, et al (2022). 68Ga-PSMA-11 PET/MRI in patients with newly diagnosed intermediate- or high-risk prostate adenocarcinoma: PET findings correlate with outcomes after definitive treatment. J Nucl Med, 63 (12):1822-1828.
47. Huo H, Shen S, He D, et al (2023). Head-to-head comparison of (68)Ga-PSMA-11 PET/CT and (68)Ga-PSMA-11 PET/MRI in the detection of biochemical recurrence of prostate cancer: summary of head-to-head comparison studies. Prostate Cancer Prostatic Dis, 26(1):16-24.
48. Gordon LG, Elliott TM, Joshi A, et al (2020). Exploratory cost-effectiveness analysis of (68)Gallium-PSMA PET/MRI-based imaging in patients with biochemical recurrence of prostate cancer. Clin Exp Metastasis, 37 (2):305-312.
Files
IssueVol 53 No 6 (2024) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijph.v53i6.15896
Keywords
Prostate cancer Biochemical recurrence Meta-analysis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Wang D, Wang Z-H, Wang C-B, Wu Z-C. The Diagnostic Performance of 68Ga-PSMA-11 PET/MRI for the Biochemically Recurrent Prostate Cancer: A Systematic Review and Meta-analysis. Iran J Public Health. 2024;53(6):1224-1235.