Review Article

Comparison of miRNA Profiles of Primary Tumors and Metastatic Tumors of Salivary Gland Tumors and their Role in Prognosis: A Systematic Review

Abstract

Background: MicroRNAs (miRNAs) are implicated in several biological processes, such as control of tissue homeostasis, cell signaling, differentiation, proliferation, neoplastic transformation, and activation/inhibition of apoptotic mechanisms. In this systematic review, we evaluated the changes in the expression pattern of miRNAs in salivary gland tumors (SGTs).
Methods: A comprehensive search was conducted in PubMed, and Scopus with no language and date restrictions in Feb 2023. All the studies on SGTs that evaluated miRNA profiling were included. Relevant data regarding the overexpression and down-regulation of the miRNAs were extracted. The quality of the included studies was evaluated with Newcastle–Ottawa checklist. The altered expression of miRNAs was evaluated between SGTs and normal cases, benign and malignant tumors, and primary and high-grade tumors.
Results: Thirteen studies were included in this systematic review. There were considerable differences between malignant and benign tumors regarding the miRNAs expression level. In the five studies, the miRNA profile of the primary tumors was compared with metastatic tumors to reveal the involvement of the miRNA in the prognosis of the salivary tumors. The miRNAs expression changes were correlated with tumor size, stage, recurrence, and occurrence of solid components. Perineural invasion and lymph node metastasis were also reported in ACC-LM cell line and recurrence of adenoid cystic carcinoma (ACC) tissues.
Conclusion: The miRNA profiling confirms their prognostic value in salivary gland tumors. Significant alternations of the miRNAs expression are useful for distinguishing different types of salivary tumors and malignant tumors from benign types. The miRNA expression changes also affect the prognosis of salivary tumors.

1. de Oliveira FA, Duarte EC, Taveira CT, et al (2009). Salivary gland tumor: a review of 599 cases in a Brazilian population. Head Neck Pathol, 3 (4):271-5.
2. Mairembam P, Jay A, Beale T, et al (2016). Salivary gland FNA cytology: role as a triage tool and an approach to pitfalls in cytomorphology. Cytopathology, 27 (2):91-6.
3. Pusztaszeri MP, Faquin WC (2015). Update in salivary gland cytopathology: Recent molecular advances and diagnostic applications. Semin Diagn Pathol, 32 (4):264-74.
4. Xiao H, Wong DT (2011). Proteomics and its applications for biomarker discovery in human saliva. Bioinformation, 5 (7):294-6.
5. Zhang L, Farrell JJ, Zhou H, et al (2010). Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology, 138 (3):949-57.e1-7.
6. Gonzalez-Begne M, Lu B, Han X, et al (2009). Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res, 8 (3):1304-14.
7. Condrat CE, Thompson DC, Barbu MG, et al (2020). miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells, 9 (2):276.
8. Etheridge A, Lee I, Hood L, Galas D, Wang K (2011). Extracellular microRNA: a new source of biomarkers. Mutat Res, 717 (1-2):85-90.
9. Jang JH, Lee TJ (2021). The role of microRNAs in cell death pathways. Yeungnam Univ J Med, 38 (2):107-117.
10. Peng Y, Croce CM (2016). The role of MicroRNAs in human cancer. Signal Transduct Target Ther, 1:15004.
11. Mirhashemi M, Ghazi N, Saghravanian N, et al (2020). Evaluation of CD24 and CD44 as cancer stem cell markers in squamous cell carcinoma and epithelial dysplasia of the oral cavity by q-RT-PCR. Dental Res J (Isfahan), 17 (3):208-212.
12. Wang JY, Wang CL, Wang XM, et al (2017). Comprehensive analysis of microRNA/mRNA signature in colon adenocarcinoma. Eur Rev Med Pharmacol Sci, 21 (9):2114-2129.
13. Wang SY, Shiboski S, Belair CD, et al (2014). miR-19, miR-345, miR-519c-5p serum levels predict adverse pathology in prostate cancer patients eligible for active surveillance. PLoS One, 9 (6):e98597.
14. Alemar B, Izetti P, Gregório C, et al (2016). miRNA-21 and miRNA-34a Are Potential Minimally Invasive Biomarkers for the Diagnosis of Pancreatic Ductal Adenocarcinoma. Pancreas, 45 (1):84-92.
15. Baloch ZW, Asa SL, Barletta JA, et al (2022). Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol, 33 (1):27-63.
16. Jahanbin A, Hasanzadeh N, Abdolhoseinpour F, et al (2014). Analysis of MTHFR gene C. 677C> T and C. 1298A> C polymorphisms in Iranian patients with non-syndromic cleft lip and palate. Iran J Public Health, 43 (6):821-7.
17. Boštjančič E, Hauptman N, Grošelj A, et al (2017). Expression, Mutation, and Amplification Status of EGFR and Its Correlation with Five miRNAs in Salivary Gland Tumours. Biomed Res Int, 2017:9150402.
18. Shamseer L, Moher D, Clarke M, et al (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ, 350:g7647.
19. Andreasen S, Tan Q, Agander TK, et al (2018). MicroRNA dysregulation in adenoid cystic carcinoma of the salivary gland in relation to prognosis and gene fusion status: a cohort study. Virchows Arch, 473 (3):329-340.
20. Binmadi NO, Basile JR, Perez P, et al (2018). miRNA expression profile of mucoepidermoid carcinoma. Oral Dis, 24 (4):537-543.
21. Chen W, Zhao X, Dong Z, et al (2014). Identification of microRNA profiles in salivary adenoid cystic carcinoma cells during metastatic progression. Oncol Lett, 7 (6):2029-2034.
22. Cinpolat O, Unal ZN, Ismi O, et al (2017). Comparison of microRNA profiles between benign and malignant salivary gland tumors in tissue, blood and saliva samples: a prospective, case-control study. Braz J Otorhinolaryngol, 83 (3):276-284.
23. Han N, Lu H, Zhang Z, et al (2018). Comprehensive and in-depth analysis of microRNA and mRNA expression profile in salivary adenoid cystic carcinoma. Gene, 678:349-360.
24. Mitani Y, Roberts DB, Fatani H, et al (2013). MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome. PLoS One, 8 (6):e66778.
25. Santos PRB, Coutinho-Camillo CM, Soares FA, et al (2017). MicroRNAs expression pattern related to mast cell activation and angiogenesis in paraffin-embedded salivary gland tumors. Pathol Res Pract, 213 (12):1470-1476.
26. Zhang X, Cairns M, Rose B, et al (2009). Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer, 124 (12):2855-63.
27. Kiss O, Tőkés AM, Vranic S, et al (2015). Expression of miRNAs in adenoid cystic carcinomas of the breast and salivary glands. Virchows Arch, 467 (5):551-62.
28. Naakka E, Barros-Filho MC, Adnan-Awad S, et al (2022). miR-22 and miR-205 drive tumor aggressiveness of mucoepidermoid carcinomas of salivary glands. Front Oncol, 11:786150.
29. Zhang X, Cairns M, Rose B, et al (2009). Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer, 124 (12):2855-2863.
30. Andreasen S, Agander TK, Bjørndal K, et al (2018). Genetic rearrangements, hotspot mutations, and microRNA expression in the progression of metastatic adenoid cystic carcinoma of the salivary gland. Oncotarget, 9 (28):19675-19687.
31. Matse JH, Yoshizawa J, Wang X, et al (2015). Human Salivary Micro-RNA in Patients with Parotid Salivary Gland Neoplasms. PLoS One, 10 (11):e0142264.
32. Gao R, Cao C, Zhang M, et al (2014). A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets. Oncotarget, 5 (24):12528-42.
33. Denaro M, Navari E, Ugolini C, et al (2019). A microRNA signature for the differential diagnosis of salivary gland tumors. PLoS One, 14 (1):e0210968.
34. Matse JH, Yoshizawa J, Wang X, et al (2013). Discovery and prevalidation of salivary extracellular microRNA biomarkers panel for the noninvasive detection of benign and malignant parotid gland tumors. Clin Cancer Res, 19 (11):3032-8.
35. Kim H, Eun S, Jeong WJ, et al (2022). Identification of differentially expressed microRNAs as potential biomarkers for carcinoma ex pleomorphic adenoma. Sci Rep, 12 (1):13383.
36. Feng X, Matsuo K, Zhang T, et al (2017). MicroRNA Profiling and Target Genes Related to Metastasis of Salivary Adenoid Cystic Carcinoma. Anticancer Res, 37 (7):3473-3481.
37. Wang S, Zhang L, Shi P, et al (2018). Genome-wide profiles of metastasis-associated mRNAs and microRNAs in salivary adenoid cystic carcinoma. Biochem Biophys Res Commun, 500 (3):632-638.
38. Lui WO, Pourmand N, Patterson BK, et al (2007). Patterns of known and novel small RNAs in human cervical cancer. Cancer Res, 67 (13):6031-43.
39. Lee EJ, Gusev Y, Jiang J, et al (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer, 120 (5):1046-54.
40. Andreasen S, Therkildsen MH, Grauslund M, et al (2015). Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland. APMIS, 123 (8):706-15.
41. Meng F, Henson R, Wehbe-Janek H, et al (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133 (2):647-58.
42. Zhu S, Si ML, Wu H, et al (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 282 (19):14328-36.
43. Dan T, Shastri AA, Palagani A, et al (2021). miR-21 Plays a Dual Role in Tumor Formation and Cytotoxic Response in Breast Tumors. Cancers (Basel), 13 (4):888.
44. Chen D, Cabay RJ, Jin Y, et al (2013). MicroRNA Deregulations in Head and Neck Squamous Cell Carcinomas. J Oral Maxillofac Res, 4 (1):e2.
45. Cipriani NA, Lusardi JJ, McElherne J, et al (2019). Mucoepidermoid Carcinoma: A Comparison of Histologic Grading Systems and Relationship to MAML2 Rearrangement and Prognosis. Am J Surg Pathol, 43 (7):885-897.
46. Kim BK, Yoo HI, Kim I, et al (2015). FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer. BMB Rep, 48 (6):360-6.
47. Zhou J, Liu R, Wang Y, et al (2014). miR-199a-5p regulates the expression of metastasis-associated genes in B16F10 melanoma cells. Int J Clin Exp Pathol, 7 (10):7182-90.
48. Liu CJ, Kao SY, Tu HF, et al (2010). Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis, 16 (4):360-4.
49. Chou CK, Yang KD, Chou FF, et al (2013). Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metab, 98 (2):E196-205.
50. Fuziwara CS, Kimura ET (2014). MicroRNA Deregulation in Anaplastic Thyroid Cancer Biology. Int J Endocrinol, 2014:743450.
51. Brown AL, Al-Samadi A, Sperandio M, et al (2019). MiR-455-3p, miR-150 and miR-375 are aberrantly expressed in salivary gland adenoid cystic carcinoma and polymorphous adenocarcinoma. J Oral Pathol Med, 48 (9):840-845.
52. Takamizawa J, Konishi H, Yanagisawa K, et al (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 64 (11):3753-6.
53. Johnson SM, Grosshans H, Shingara J, et al (2005). RAS is regulated by the let-7 microRNA family. Cell, 120 (5):635-47.
54. Bi Q, Tang S, Xia L, et al (2012). Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One, 7 (6):e40169.
55. Hsieh TH, Hsu CY, Tsai CF, et al (2015). miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget, 6 (1):494-509.
56. Kim JK, Noh JH, Jung KH, et al (2013). Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology, 57 (3):1055-67.
57. Liang Y, Ye J, Jiao J, et al (2017). Down-regulation of miR-125a-5p is associated with salivary adenoid cystic carcinoma progression via targeting p38/JNK/ERK signal pathway. Am J Transl Res, 9 (3):1101-1113.
58. Li L, Wang Y, Zhou X (2018). Tumor-suppressive effect of miR-148 a on salivary adenoid cystic carcinoma via down-regulation of MTA2. Int J Clin Exp Med,11(11):11973-11980
59. Stenman G, Sandros J, Mark J, Nordkvist A (1989). High p21RAS expression levels correlate with chromosome 8 rearrangements in benign human mixed salivary gland tumors. Genes Chromosomes Cancer, 1 (1):59-66.
60. Calin GA, Sevignani C, Dumitru CD, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 101 (9):2999-3004.
61. Oulas A, Boutla A, Gkirtzou K, et al (2009). Prediction of novel microRNA genes in cancer-associated genomic regions--a combined computational and experimental approach. Nucleic Acids Res, 37 (10):3276-87.
Files
IssueVol 53 No 9 (2024) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijph.v53i9.16453
Keywords
Salivary gland neoplasms MicroRNAs Neoplasm metastasis Biomarkers Systematic review

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mohtasham N, Tarrah M, Arab F, Sadeghi M, Mohajertehran F. Comparison of miRNA Profiles of Primary Tumors and Metastatic Tumors of Salivary Gland Tumors and their Role in Prognosis: A Systematic Review. Iran J Public Health. 2024;53(9):1992-2005.