Review Article

An Overview on Prevalence and Detection Approaches of BRAF V600E Mutation in Anaplastic Thyroid Carcinoma: A Systematic Review and Meta-Analysis

Abstract

Background: BRAF V600E mutation is proved critical in the progression and invasion of thyroid cancer, and as a prognostic biomarker. As anaplastic thyroid cancer (ATC) is a rare and aggressive form of thyroid cancer, this study was conducted to provide a view on prevalence of BRAF V600E as well as the best molecular diagnostic method in ATC patients.

Methods: A comprehensive literature search was performed from their inception to Oct 2022 in PubMed, Scopus, Google Scholar, and Web of Science (WoS). The data of the prevalence of ATC were extracted. Moreover, the diagnostic feature of the available diagnostic tools was extracted to measure the sensitivity and specificity. To pool the prevalence data, we used meta-proportion analysis and diagnostic meta-analysis was conducted to determine the specificity and sensitivity of the immunohistochemistry method in detecting BRAF V600E mutation among patients with ATC.

Results: Overall, 34 studies were included in this meta-analysis. The incidence of BRAF V600E was shown 33% in the 978 patients. The sensitivity and specificity of IHC in detecting BRAF V600E were detected 78.9% (95%CI: 60.1-97.2), and 69.7% (95%CI: 41.2-98.1), respectively.

Conclusion: IHC had an acceptable prognostic profile for detecting BRAF V600E in ATC patients. The diagnosis of BRAF mutation is critical in clinical trials and may be helpful for choosing proper-targeted therapy strategies in ATC patients.

1. Smallridge RC, Copland JA (2010). Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol), 22 (6):486-97.
2. Reddi HV, Kumar A, Kulstad R (2015). Anaplastic thyroid cancer an overview of genetic variations and treatment modalities. Adv Genom Genet, 2015 (5):43-52.
3. Dijkstra B, Prichard RS, Lee A, et al (2007). Changing patterns of thyroid carcinoma. Ir J Med Sci, 176 (2):87-90.
4. Bible KC, Kebebew E, Brierley J, et al (2021). 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid, 31 (3):337-386.
5. Smallridge RC, Ain KB, Asa SL, et al (2012). American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid, 22 (11):1104-39.
6. McIver B, Hay ID, Giuffrida DF, et al (2001). Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery, 130 (6):1028-34.
7. Cornett WR, Sharma AK, Day TA, et al (2007). Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep, 9 (2):152-8.
8. Oishi N, Kondo T, Ebina A, et al (2017). Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Mod Pathol, 30 (11):1527-1537.
9. Chintakuntlawar AV, Foote RL, Kasperbauer JL, et al (2019). Diagnosis and Management of Anaplastic Thyroid Cancer. Endocrinol Metab Clin North Am, 48 (1):269-284.
10. Landa I, Ibrahimpasic T, Boucai L, et al (2016). Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest, 126 (3):1052-1066.
11. Pozdeyev N, Gay LM, Sokol ES, et al (2018). Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res, 24 (13):3059-3068.
12. Pozdeyev N, Rose MM, Bowles DW, Schweppe RE (2020) Molecular therapeutics for anaplastic thyroid cancer. Semin Cancer Biol, 61:23-29.
13. Romei C, Tacito A, Molinaro E, et al R (2018). Clinical, pathological and genetic features of anaplastic and poorly differentiated thyroid cancer: A single institute experience. Oncol Lett, 15 (6):9174-9182.
14. Shiraiwa K, Matsuse M, Nakazawa Y, et al (2019). JAK/STAT3 and NF-κB Signaling Pathways Regulate Cancer Stem-Cell Properties in Anaplastic Thyroid Cancer Cells. Thyroid, 29 (5):674-682.
15. Carcangiu ML, Steeper T, Zampi G, Rosai J (1985). Anaplastic thyroid carcinoma. A study of 70 cases. Am J Clin Pathol, 83 (2):135-58.
16. Cabanillas ME, McFadden DG, Durante C (2016). Thyroid cancer. Lancet, 388 (10061):2783-2795.
17. Rao SN, Zafereo M, Dadu R, et al (2017). Patterns of treatment failure in anaplastic thyroid carcinoma. Thyroid, 27 (5):672-681.
18. Al-Jundi M, Thakur S, Gubbi S, Klubo-Gwiezdzinska J (2020). Novel targeted therapies for metastatic thyroid cancer—a comprehensive review. Cancers (Basel), 12 (8):2104.
19. Begum S, Rosenbaum E, Henrique R, et al (2004). BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol, 17 (11):1359-63.
20. Bishop JA, Sharma R, Westra WH (2011). PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol, 42 (12):1873-7.
21. LiVolsi VA, Brooks JJ, Arendash-Durand B (1987). Anaplastic thyroid tumors. Immunohistology. Am J Clin Pathol, 87 (4):434-42.
22. Sweeney P, Haraf D, Recant W, Kaplan E, Vokes E (1996). Anaplastic carcinoma of the thyroid. Ann Oncol, 7 (7):739-744.
23. Choi S, Shugard E, Khanafshar E, et al (2016). Association between BRAF V600E mutation and decreased survival in patients locoregionally irradiated for anaplastic thyroid carcinoma. International Journal of Radiation Oncology, Biology, Physics, 96 (2S):E356.
24. Davies H, Bignell GR, Cox C, et al (2002). Mutations of the BRAF gene in human cancer. Nature, 417 (6892):949-54.
25. Nikiforova MN, Kimura ET, Gandhi M, et al (2003). BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab, 88 (11):5399-404.
26. Page MJ, McKenzie JE, Bossuyt PM, et al (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372:n71.
27. Fisher KE, Neill SG, Ehsani L, et al (2014). Immunohistochemical Investigation of BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol, 22 (8):562-7.
28. Duan H, Li Y, Hu P, et al (2019). Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next‐generation sequencing. Histopathology, 75 (6):890-899.
29. Xing M, Vasko V, Tallini G, et al (2004). BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab, 89 (3):1365-1368.
30. Iyer PC, Cote GJ, Hai T, et al (2018). Circulating BRAF V600E cell-free DNA as a biomarker in the management of anaplastic thyroid carcinoma. JCO Precis Oncol, 2:PO.18.00173.
31. Qin Y, Wang JR, Wang Y, et al (2021). Clinical utility of circulating cell-free DNA mutations in anaplastic thyroid carcinoma. Thyroid, 31 (8):1235-1243.
32. Rashid M, Agarwal A, Pradhan R, et al (2019). Genetic alterations in anaplastic thyroid carcinoma. Indian J Endocrinol Metab, 23 (4):480-485.
33. Song E, Song DE, Ahn J, et al (2020). Genetic profile of advanced thyroid cancers in relation to distant metastasis. Endocr Relat Cancer, 27 (5):285-293.
34. Jeon MJ, Chun S-M, Kim D, et al (2016). Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAFV600E mutation-prevalent area. Thyroid, 26 (5):683-690.
35. Chen TY, Lorch JH, Wong KS, Barletta JA (2020). Histological features of BRAF V600E‐mutant anaplastic thyroid carcinoma. Histopathology, 77 (2):314-320.
36. Shi X, Liu R, Qu S, et al (2015). Association of TERT promoter mutation 1,295,228 C> T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J Clin Endocrinol Metab, 100 (4):E632-7.
37. Titov SE, Kozorezova ES, Demenkov PS, et al (2021). Preoperative typing of thyroid and parathyroid tumors with a combined molecular classifier. Cancers (Basel), 13 (2):237.
38. Nakamura N, Carney JA, Jin L, et al (2005). RASSF1A and NORE1A methylation and BRAFV600E mutations in thyroid tumors. Lab Invest, 85 (9):1065-1075.
39. Sandulache VC, Williams MD, Lai SY, et al (2017). Real-time genomic characterization utilizing circulating cell-free DNA in patients with anaplastic thyroid carcinoma. Thyroid, 27 (1):81-87.
40. Yi T, Cho SG, Yi Z, et al (2008). Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther, 7 (7):1789-1796.
41. Ghossein RA, Katabi N, Fagin JA (2013). Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of BRAF-induced thyroid cancers along the spectrum of disease progression. J Clin Endocrinol Metab, 98 (8):E1414-21.
42. Bae JS, Kim Y, Jeon S, et al (2016). Clinical utility of TERT promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of the BRAF V600E mutation. Diagn Pathol, 11:21.
43. Kim S, Sreevidya CS, Ananthaswamy HN, et al (2004). The prevalence of BRAFV599E mutation in anaplastic thyroid carcinoma and in anaplastic thyroid carcinoma cell lines. Cancer Res, 64 (7_Supplement):261-262.
44. Rushton S, Burghel G, Wallace A, Nonaka D (2016). Immunohistochemical detection of BRAF V600E mutation status in anaplastic thyroid carcinoma. Histopathology, 69 (3):524-526.
45. Xu B, Fuchs T, Dogan S, et al (2020). Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid, 30 (10):1505-1517.
46. Costa AM, Herrero A, Fresno MF, et al (2008). BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf), 68 (4):618-634.
47. Zhu X, Luo Y, Bai Q, et al (2016). Specific immunohistochemical detection of the BRAF V600E mutation in primary and metastatic papillary thyroid carcinoma. Exp Mol Pathol, 100 (1):236-241.
48. Deeken-Draisey A, Yang G-Y, Gao J, Alexiev BA (2018). Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum Pathol, 82:140-148.
49. Na JI, Kim JH, Kim HJ, et al (2015). VE1 immunohistochemical detection of the BRAF V600E mutation in thyroid carcinoma: a review of its usefulness and limitations. Virchows Arch, 467 (2):155-168.
50. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X (2005). Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer, 103 (11):2261-8.
51. Gauchotte G, Philippe C, Lacomme S, et al (2011). BRAF, p53 and SOX2 in anaplastic thyroid carcinoma: evidence for multistep carcinogenesis. Pathology, 43 (5):447-52.
52. Takano T, Ito Y, Hirokawa M, et al (2007). BRAF V600E mutation in anaplastic thyroid carcinomas and their accompanying differentiated carcinomas. Br J Cancer, 96 (10):1549-53.
53. Ricarte-Filho JC, Ryder M, Chitale DA, et al (2009). Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res, 69 (11):4885-93.
54. Fukushima T, Suzuki S, Mashiko M, et al (2003). BRAF mutations in papillary carcinomas of the thyroid. Oncogene, 22 (41):6455-7.
55. Namba H, Nakashima M, Hayashi T, et al (2003). Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab, 88 (9):4393-7.
56. Janz TA, Neskey DM, Nguyen SA, Lentsch EJ (2018). Is the incidence of anaplastic thyroid cancer increasing: A population based epidemiology study. World J Otorhinolaryngol Head Neck Surg, 5 (1):34-40.
57. Wang Z, Chen JQ, Liu JL, Qin XG (2016). Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta‐analysis. Eur J Clin Invest, 46 (2):146-157.
58. Falchook GS, Long GV, Kurzrock R, et al (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet, 379 (9829):1893-1901.
59. Subbiah V, Kreitman R, Wainberg Z, et al (2022). Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. Ann Oncol, 33 (4):406-415.
60. De Leo S, Trevisan M, Fugazzola L (2020). Recent advances in the management of anaplastic thyroid cancer. Thyroid Res, 13 (1):17.
61. Smith AL, Williams MD, Stewart J, et al (2018). Utility of the BRAF p.V600E immunoperoxidase stain in FNA direct smears and cell block preparations from patients with thyroid carcinoma. Cancer Cytopathol, 126 (6):406-413.
62. Szymonek M, Kowalik A, Kopczyński J, et al (2017). Immunohistochemistry cannot replace DNA analysis for evaluation of BRAF V600E mutations in papillary thyroid carcinoma. Oncotarget, 8 (43):74897-74909.
63. Dvorak K, Higgins A, Palting J, Cohen M, Brunhoeber P (2019). Immunohistochemistry with Anti-BRAF V600E (VE1) Mouse Monoclonal Antibody is a Sensitive Method for Detection of the BRAF V600E Mutation in Colon Cancer: Evaluation of 120 Cases with and without KRAS Mutation and Literature Review. Pathol Oncol Res, 25 (1):349-359.
64. Hosseinkhan N, Honardoost M, Emami Z, et al (2022). A systematic review of molecular alterations in invasive non-functioning pituitary adenoma. Endocrine, 77 (3):500-509.
65. Agarwal S, Bychkov A, Jung CK (2021). Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel), 14 (1):204.
Files
IssueVol 53 No 7 (2024) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijph.v53i7.16044
Keywords
Anaplastic thyroid carcinoma Diagnostic methods B-type Raf kinase V600E mutation Systematic review

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Karimi Behnagh A, Eghbali M, Abdolmaleki F, Asadi Ghadikolaei O, Rezazadeh Asl P, Afsharpad M, Cheraghi S, Honardoost M. An Overview on Prevalence and Detection Approaches of BRAF V600E Mutation in Anaplastic Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Iran J Public Health. 2024;53(7):1496-1507.