Original Article

MiR-103a-3p Promotes Tumorigenesis of Breast Cancer by

Abstract

Background: We aimed to elucidate the molecular mechanism of miR-103a-3p regulating breast cancer progression.

Methods: Firstly, clinical tissues was obtained from 2019-2023 at Yancheng Third People's Hospital, Yancheng, China. miR-103a-3p or ETNK1 expression in clinical tissues or breast cancer cell lines was analyzed with qRT-PCR. MDA-MB-231 cells were performed with miR-103a-3p inhibitor or mimic, and OE-ETNK1. The proliferation and apoptosis ability were detected by CCK-8 and TUNEL assay. The xenograft models were established by inoculating transfected MDA-MB-231 cells to BALB/c mice.

Results: miR-103a-3p showed an overexpression and was related to poor prognosis in breast cancer. miR-103a-3p-deprived MDA-MB-231 cells displayed weaker levels of cell proliferation and higher rates of apoptosis. In contrast, ETNK1 was downregulated in breast cancer and proved to be a downstream target of miR-103a-3p. Xenograft models subjected to either miR-103a-3p antagomir treatment or ETNK1-knockdown resulted in tumor growth suppression.

Conclusion: miR-103a-3p might promote breast cancer progression by inhibiting ETNK1.Breast cancer

1. Polyak K (2007). Breast cancer: origins and evolution. J Clin Invest, 117(11): 3155-63.
2. Karagiannis GS, Goswami S, Jones JG, et al (2016). Signatures of breast cancer metastasis at a glance. J Cell Sci, 129(9): 1751-8.
3. Castañeda-Gill JM, Vishwanatha JK (2016). Antiangiogenic mechanisms and factors in breast cancer treatment. J Carcinog, 15: 1.
4. Sun YS, Zhao Z, Yang ZN, et al (2017). Risk Factors and Preventions of Breast Cancer. Int J Biol Sci, 13(11): 1387-1397.
5. Di Leva G, Garofalo M, Croce CM (2014). MicroRNAs in cancer. Annu Rev Pathol, 9: 287-314.
6. Plank M, Maltby S, Mattes J, Foster PS (2013). Targeting translational control as a novel way to treat inflammatory disease: the emerging role of microRNAs. Clin Exp Allergy, 43(9): 981-99.
7. Vienberg S, Geiger J, Madsen S, Dalgaard LT (2017). MicroRNAs in metabolism. Acta Physiol (Oxf), 219(2): 346-361.
8. Wang W, Kwon EJ, Tsai LH (2012). MicroRNAs in learning, memory, and neurological diseases. Learn Mem, 19(9): 359-68.
9. Menghini R, Stöhr R, Federici M (2014). MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev, 17: 68-78.
10. Liu F, Mao H, Chai S, Mao H (2021). Meta-analysis of the diagnostic value of exosomal miR-21 as a biomarker for the prediction of cancer. J Clin Lab Anal, 35(10): e23956.
11. Arghiani N, Matin MM (2021). miR-21: A Key Small Molecule with Great Effects in Combination Cancer Therapy. Nucleic Acid Ther, 31(4): 271-283.
12. Zhang L, Liao Y, Tang L (2019). MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res, 38(1): 53.
13. Beg MS, Brenner AJ, Sachdev J, et al (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs, 35(2): 180-188.
14. Svoronos AA, Engelman DM, Slack FJ (2016). OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res, 76(13): 3666-70.
15. Peng B, Theng PY, Le MTN (2021). Essential functions of miR-125b in cancer. Cell Prolif, 54(2): e12913.
16. Zhong S, Golpon H, Zardo P, Borlak J (2021). miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res, 230: 164-196.
17. Liu Y, Qiu S, Zheng X, et al (2021). LINC00662 modulates cervical cancer cell proliferation, invasion, and apoptosis via sponging miR-103a-3p and upregulating PDK4. Mol Carcinog, 60(6): 365-376.
18. Sun Z, Zhang Q, Yuan W, et al (2020). MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res, 39(1): 250.
19. Su D, Ji Z, Xue P, Guo S, Jia Q, Sun H (2020). Long-Noncoding RNA FGD5-AS1 Enhances the Viability, Migration, and Invasion of Glioblastoma Cells by Regulating the miR-103a-3p/TPD52 Axis. Cancer Manag Res, 12: 6317-6329.
20. Chen KH, Pan JF, Chen ZX, et al (2020). Effects of hsa_circ_0000711 expression level on proliferation and apoptosis of hepatoma cells. Eur Rev Med Pharmacol Sci, 24(8): 4161-4171.
21. Zhang ML, Sun WH, Wu HQ, et al (2020). Knockdown of microRNA-103a-3p inhibits the malignancy of thyroid cancer cells through Hippo signaling pathway by upregulating LATS1. Neoplasma, 67(6): 1266-1278.
22. Mommers EC, van Diest PJ, Leonhart AM, et al (1999). Balance of cell proliferation and apoptosis in breast carcinogenesis. Breast Cancer Res Treat, 58(2): 163-9.
23. Kutanzi KR, Koturbash I, Bronson RT, et al (2010). Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats. Mutat Res, 694(1-2): 1-6.
24. Bian Q (2019). Circular RNA PVT1 promotes the invasion and epithelial-mesenchymal transition of breast cancer cells through serving as a competing endogenous RNA for miR-204-5p. Onco Targets Ther, 12: 11817-11826.
25. Carbine NE, Lostumbo L, Wallace J, Ko H (2018). Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst Rev, 4: CD002748.
26. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, et al (2017). Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin, 67(5): 378-397.
27. Greenlee H, DuPont-Reyes MJ, Balneaves LG, et al (2017). Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J Clin. 67(3): 194-232.
28. Hu J, Markowitz GJ, Wang X (2016). Noncoding RNAs Regulating Cancer Signaling Network. Adv Exp Med Biol, 927: 297-315.
29. Zarredar H, Ansarin K, Baradaran B, et al (2018). Critical microRNAs in Lung Cancer: Recent Advances and Potential Applications. Anticancer Agents Med Chem, 18(14): 1991-2005.
30. Luan X, Zhou X, Fallah P, et al (2022). MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol, 124: 85-98.
31. Xing Y, Ruan G, Ni H, et al (2021). Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front Immunol, 12: 624725.
32. Itani MM, Nassar FJ, Tfayli AH, et al (2021). A Signature of Four Circulating microRNAs as Potential Biomarkers for Diagnosing Early-Stage Breast Cancer. Int J Mol Sci, 22(11):6121.
33. Liu T, Ye P, Ye Y, Han B (2021). MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci, 17(11): 2970-2983.
34. Zhang W, Liu H, Jiang J, et al (2021). CircRNA circFOXK2 facilitates oncogenesis in breast cancer via IGF2BP3/miR-370 axis. Aging (Albany NY), 13(14): 18978-18992.
35. Wang G, Ye Q, Ning S, et al (2021). LncRNA MEG3 promotes endoplasmic reticulum stress and suppresses proliferation and invasion of colorectal carcinoma cells through the MEG3/miR-103a-3p/PDHB ceRNA pathway. Neoplasma, 68(2): 362-374.
36. Ge J, Mao L, Xu W, et al (2021). miR-103a-3p Suppresses Cell Proliferation and Invasion by Targeting Tumor Protein D52 in Prostate Cancer. J Invest Surg, 34(9): 984-992.
37. Zhang G, Chen Z, Zhang Y, et al (2020). Inhibition of miR-103a-3p suppresses the proliferation in oral squamous cell carcinoma cells via targeting RCAN1. Neoplasma, 67(3): 461-472.
38. Fontana D, Mauri M, Renso R, et al (2020). ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine. Nat Commun, 11(1): 5938.
39. Kosmider O (2015). Mutations of ETNK1 in aCML and CMML. Blood, 125(3): 422-3.
40. Lasho TL, Finke CM, Zblewski D, et al (2015). Novel recurrent mutations in ethanolamine kinase 1 (ETNK1) gene in systemic mastocytosis with eosinophilia and chronic myelomonocytic leukemia. Blood Cancer J, 5(1): e275.
41. Ratovitski EA (2015). Delta Np63 alpha – Responsive microRNA Modulate the Expression of Metabolic Enzymes. Curr Pharm Biotechnol, 16(9): 832-50.
42. Chang H, Rha SY, Jeung HC, et al (2010). Identification of genes related to a synergistic effect of taxane and suberoylanilide hydroxamic acid combination treatment in gastric cancer cells. J Cancer Res Clin Oncol, 136(12): 1901-13.
43. Ratovitski EA (2015). Delta Np63 alpha – Responsive microRNA Modulate the Expression of Metabolic Enzymes. Curr Pharm Biotechnol, 16(9): 832-50.
44. Chang H, Rha SY, Jeung HC, et al (2010). Identification of genes related to a synergistic effect of taxane and suberoylanilide hydroxamic acid combination treatment in gastric cancer cells. J Cancer Res Clin Oncol, 136(12): 1901-13.
45. Li L, Mou YP, Wang YY, et al (2019). miR-199a-3p targets ETNK1 to promote invasion and migration in gastric cancer cells and is associated with poor prognosis. Pathol Res Pract, 215(9): 152511.
Files
IssueVol 53 No 1 (2024) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijph.v53i1.14697
Keywords
Breast cancer miR-103a-3p Proliferation Apoptosis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Shi Y, Li L, Qiu A. MiR-103a-3p Promotes Tumorigenesis of Breast Cancer by. Iran J Public Health. 2024;53(1):208-218.