Review Article

Diagnostic and Prognostic Value of miR-93 in Prostate Cancer: A Meta-Analysis and Bioinformatics Analysis

Abstract

Background: Accurate and non-invasive diagnostic and prognostic markers are necessary to improve patient outcomes. MicroRNAs have been proposed as relatively non-invasive and pertinent biomarkers. miR-93 has been studied for its potential as a diagnostic and prognostic marker in prostate cancer (PCa), but findings from individual studies are inconsistent. We conducted a meta-analysis of its overall differential expression in 13 PCa studies and a bioinformatics analysis to provide a comprehensive appraisal of its diagnostic and prognostic role.

Methods: We searched all published papers on miR-93 expression in PCa up to Nov 30, 2022 using PubMed, Science Direct, Web of Science, Cochrane Central Register of Controlled Trials databases. We used RevMan software to Meta-analyze the included literature. A bioinformatics analysis of genes and pathways that might be target to the effect of the mature miR-93-5p was carried out.

Results: The pooled standardized mean difference (SMD) of miR-93 expression in PCa, its area under the curve (AUC) and hazard ratio (HR) were 1.26, 95% CI [-0.34–2.86], 0.84, 95% CI [0.76 –0.93] and 1.67, 95% CI [0.98, 2.84] respectively. Bioinformatics analysis revealed that mature miR-93-5p may regulate genes such as SMAD1, SMAD7 and MAPK and the PI3K-Akt signaling pathways.

Conclusion: miR-93 has significant diagnostic and prognostic value in PCa. These findings highlight the potential of miR-93 as a non-invasive biomarker for PCa and may contribute to earlier detection and prognostic assessment. The target genes and signaling pathways regulated by miR-93 may provide insights into the underlying molecular mechanisms of PCa.

1. Ferlay J, Colombet M, Soerjomataram I, et al (2021). Cancer statistics for the year 2020: An overview. Int J Cancer, 149(4):778–89.
2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021). Cancer Statistics, CA Cancer J Clin, 2021 71(1):7–33.
3. Gasinska A, Jaszczynski J, Rychlik U, Łuczynska E, Pogodzinski M, Palaczyn-ski M (2020). Prognostic Significance of Serum PSA Level and Telomerase, VEGF and GLUT-1 Protein Expression for the Biochemical Recurrence in Pros-tate Cancer Patients after Radical Pros-tatectomy. Pathol Oncol Res, 26(2):1049–56.
4. Chen D, Cabay RJ, Jin Y, Wang A, Lu Y, Shah-Khan M, et al (2013). MicroRNA Deregulations in Head and Neck Squa-mous Cell Carcinomas. J Oral Maxillofac Res, 4(1): e2.
5. Arantes LMRB, Laus AC, Melendez ME, et al (2017). MiR-21 as prognostic bi-omarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget, 8(6):9911–21.
6. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281–97.
7. Khan MM, Serajuddin M, Bharadwaj M (2023). Potential plasma microRNAs signature miR-190b-5p, miR-215-5p and miR-527 as non-invasive biomarkers for prostate cancer. Biomarkers, 28(2):227-237 .
8. Cao Z, Guo Y, Ao Y, Zhou S (2020). Dysregulated microRNAs in laryngeal cancer: a comprehensive meta-analysis using a robust rank aggregation ap-proach. Future Oncol, 16(33):2723–34.
9. Mitchell PS, Parkin RK, Kroh EM, et al (2008). Circulating microRNAs as stable blood-based markers for cancer detec-tion. Proc Natl Acad Sci USA, 105(30):10513–8.
10. Fendler A, Stephan C, Yousef GM, Kris-tiansen G, Jung K (2016). The transla-tional potential of microRNAs as bio-fluid markers of urological tumours. Nat Rev Urol, 13(12):734–52.
11. Choi N, Park J, Lee JS, et al (2015). miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget, 6(27):23533–47.
12. Ciszkowicz E, Porzycki P, Semik M, Kaznowska E, Tyrka M (2020). MiR-93/miR-375: Diagnostic Potential, Ag-gressiveness Correlation and Common Target Genes in Prostate Cancer. Int J Mol Sci, 21(16):5667.
13. Liu JJ, Zhang X, Wu XH (2018). miR-93 Promotes the Growth and Invasion of Prostate Cancer by Upregulating Its Target Genes TGFBR2, ITGB8, and LATS2. Mol Ther Oncolytics, 11:14–9.
14. Yang K, Gao ZY, Li TQ, et al (2019). An-ti-tumor activity and the mechanism of a green tea (Camellia sinensis) polysac-charide on prostate cancer. Int J Biol Macromol, 122:95–103.
15. Zedan AH, Osther PJS, Assenholt J, Madsen JS, Hansen TF (2020). Circulat-ing miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci Rep, 10(1):227.
16. Martínez-González LJ, Sánchez-Conde V, González-Cabezuelo JM, et al (2021). Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines, 9(6):646.
17. Zhang S, Liu C, Zou X, et al (2021). Mi-croRNA panel in serum reveals novel diagnostic biomarkers for prostate can-cer. PeerJ, 9:e11441.
18. Page MJ, McKenzie JE, Bossuyt PM, et al (2021). The PRISMA 2020 statement: an updated guideline for reporting system-atic reviews. BMJ, 372:n71.
19. Rohatgi A (2022). WebPlotDigitizer User Manual Version 4.6. https://automeris.io/WebPlotDigitizer/userManual.pdf
20. Stang A (2010). Critical evaluation of the Newcastle-Ottawa scale for the assess-ment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 25(9):603–5.
21. Liu W, Wang X (2019). Prediction of func-tional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol, 20(1):18.
22. Agarwal V, Bell GW, Nam JW, Bartel DP (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4:e05005.
23. Backes C, Kehl T, Stöckel D, et al (2017). miRPathDB: a new dictionary on mi-croRNAs and target pathways. Nucleic Acids Res, 45(Database issue):D90–6.
24. Thomas PD (2017). The Gene Ontology and the Meaning of Biological Function. Methods Mol Biol, 1446:15–24.
25. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017). KEGG: new perspectives on genomes, pathways, dis-eases and drugs. Nucleic Acids Res, 45(D1):D353–61.
26. Bader GD, Hogue CW (2003). An automat-ed method for finding molecular com-plexes in large protein interaction net-works. BMC Bioinformatics, 4(1):2.
27. Chandrashekar DS, Bashel B, Balasubra-manya SAH, et al (2017). UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 19(8):649–58.
28. Vasaikar SV, Straub P, Wang J, Zhang B (2018). LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res, 46(D1):D956–63.
29. Barceló M, Castells M, Pérez-Riba M, Bas-sas L, Vigués F, Larriba S (2020). Seminal plasma microRNAs improve diagno-sis/prognosis of prostate cancer in men with moderately altered prostate-specific antigen. Am J Transl Res, 12(5):2041–51.
30. Porras-Quesada P, González-Cabezuelo JM, Sánchez-Conde V, et al (2022). Role of IGF2 in the Study of Development and Evolution of Prostate Cancer. Front Genet, 12:740641.
31. Wang C, Tian S, Zhang D, et al (2020). In-creased expression of microRNA-93 correlates with progression and progno-sis of prostate cancer. Medicine (Baltimore), 99(22):e18432.
32. Deng Z qun, Qian J, Liu F qiong, et al (2014). Expression level of miR-93 in formalin-fixed paraffin-embedded tis-sues of breast cancer patients. Genet Test Mol Biomarkers, 18(5):366–70.
33. Lyu X, Fang W, Cai L, et al (2014). TGFβR2 is a major target of miR-93 in nasopha-ryngeal carcinoma aggressiveness. Mol Cancer, 13:51.
34. Zhang H, Zhang J, Meng F, et al (2019). Mi-croRNA-93 promotes the tumorigenesis of osteosarcoma by targeting TIMP2. Bi-osci Rep, 39(8):BSR20191237.
35. Gao Y, Deng K, Liu X, et al (2019). Molec-ular mechanism and role of microRNA-93 in human cancers: A study based on bioinformatics analysis, meta-analysis, and quantitative polymerase chain reac-tion validation. J Cell Biochem, 120(4):6370–83.
36. Hu B, Mao Z, Du Q, et al (2019). miR-93-5p targets Smad7 to regulate the transform-ing growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull, 149:21–31.
37. Katsuya O, Hiromitsu H, Jinhua W, et al (2015). MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepa-tocellular carcinoma by directly inhibit-ing PTEN and CDKN1A. Oncotarget, 6(5):3211-3224.
38. Jiang L, Wang C, Lei F, et al (2015). miR-93 Promotes Cell Proliferation in Gliomas through Activation of PI3K/Akt Signal-ing Pathway. Oncotarget, 6(10):8286–99.
39. Smith AL, Iwanaga R, Drasin DJ, et al (2012). The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene, 31(50):5162–71.
40. Tang Q, Zou Z, Zou C, et al (2015). Mi-croRNA-93 suppress colorectal cancer development via Wnt/β-catenin path-way downregulating. Tumor Biol, 36(3):1701–10.
41. Qiu T, Grizzle WE, Oelschlager DK, Shen X, Cao X (2007). Control of prostate cell growth: BMP antagonizes androgen mi-togenic activity with incorporation of MAPK signals in Smad1. EMBO J, 26(2):346–57.
42. Qu F, Zheng J, Gan W, et al (2017). MiR-199a-3p suppresses proliferation and in-vasion of prostate cancer cells by target-ing Smad1. Oncotarget, 8(32):52465–73.
43. Wu J, Zhang M, Faruq O, et al (2021). SMAD1 as a biomarker and potential therapeutic target in drug-resistant mul-tiple myeloma. Biomark Res, 9(1):48.
44. Kobayashi A, Okuda H, Xing F, et al (2011). Bone morphogenetic protein 7 in dor-mancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med, 208(13):2641–55.
Files
IssueVol 52 No 11 (2023) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijph.v52i11.14026
Keywords
miR-93 Prostate Expression Meta-analysis Bioinformatics

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Gazzaz H, El Habchi M, El Feniche M, El Aatik Y, El Ouardi A, Ameur A, Dami A. Diagnostic and Prognostic Value of miR-93 in Prostate Cancer: A Meta-Analysis and Bioinformatics Analysis. Iran J Public Health. 2023;52(11):2260-2271.