Original Article

Biosorption of Cd+2 and Pb+2 by Exopolysaccharide Extracted from Lactobacillus fermentum 6b; Adsorption Isotherm and Kinetic Studies

Abstract

Background: In recent years, the biosorption of heavy metals by Lactobacillus strains has received attention from researchers. We aimed to remove of heavy metals lead and cadmium from L. fermentum 6b exopolysaccharide in 2021.

Methods: Extracellular exopolysaccharide was first extracted from selected probiotic strain, and then the effect of variables such as pH, the extracted exopolysaccharide adsorbent dose, contact time, heavy metal concentration, and temperature on the adsorption rate was investigated. The adsorption isotherms of Langmuir and Freundlich were also examined. Pseudo-first and pseudo-second-order kinetics equations were also investigated for the desired surface adsorption.

Results: The adsorption process at pH=6.5, contact time=80 min, pollutant concentration=100 mg.L-1, adsorbent dose (extracted exopolysaccharide) =1500 mg.L-1, temperature=35°C for cadmium; pH= 6, contact time=60 min, contaminant concentration of 100 mg.L-1, adsorbent dose (extracted exopolysaccharide) =1500 mg.L-1 temperature=of 35 °C for lead had optimum condition. The adsorption process corresponded to Freundlich isotherm with R2=0.958 and R2=0.988, and pseudo-second-order kinetic with R2=0.99 and R2=0.85 for cadmium and lead, respectively.

Conclusion: The exopolysaccharide extracted from L. fermentum 6b isolate can have an acceptable removal potential for lead and cadmium heavy metals.

1. Fu F, Wang Q (2011). Removal of heavy metal ions from wastewaters: a review. J Environ Manage, 92 (3): 407-18.
2. Charter M (2000). Food Safety and Toxicol-ogy. Wolf Publication, pp.:54.
3. Davis T, Volesky B, Vieira R (2000). Sargas-sum seaweed as biosorbent for heavy metals. Water Research, 34 (17): 4270-8.
4. Sharma RK, Agrawal M (2005). Biological effects of heavy metals: an overview. J Environ Biol, 26 (2 Suppl): 301-13.
5. Greenberg MI (2003). Occupational, industrial, and environmental toxicology. Elsevier Health Sci, pp.: 629-635.
6. Pruvot C, Douay F, Hervé F, Waterlot C (2006). Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. J Soils Sediments, 6 (4): 215-20.
7. WHO (2009). Global health risks: mortality and burden of disease attributable to se-lected major risks: World Health Organiza-tion, pp.: 23-25.
8. Wang J, Chen C (2009). Biosorbents for heavy metals removal and their future. Bi-otechnol Adv, 27 (2): 195-226.
9. Jarosławiecka A, Piotrowska-Seget Z (2014). Lead resistance in micro-organisms. Mi-crobiology (Reading), 160 (Pt 1): 12-25.
10. Zhai Q, et al (2019). Removal of cadmium from rice by Lactobacillus plantarum fer-mentation. Food Control, 96: 357-64.
11. Halttunen T. Removal of cadmium, lead and arsenic from water by lactic acid bacteria [PhD thesis]. Functional Foods Forum; Deparment of Biochemistry and Food Chemistry, University of Turku, Turku; 2007.
12. Kirillova AV, Danilushkina AA, Irisov DS, et al (2017). Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. Int J Microbi-ol, 2017: 9869145.
13. Moscovici M (2015). Present and future medical applications of microbial exopol-ysaccharides. Front Microbiol, 6: 1012.
14. Badel S, Bernardi T, Michaud P (2011). New perspectives for Lactobacilli exopolysac-charides. Biotechnol Adv, 29(1): 54-66.
15. De Vuyst L, De Vin F, Vaningelgem F, De-geest B (2001). Recent developments in the biosynthesis and applications of het-eropolysaccharides from lactic acid bacte-ria. Int Dairy J, 11(9): 687-707.
16. Ignatova-Ivanova T, Ivanov R (2016). Ex-opolysaccharides from lactic acid bacteria as corrosion inhibitors. Acta Scientifica Naturalis, 3(1): 51-59.
17. Goudarzi L, Kasra Kermanshahi R, Jahed Khaniki GH (2020). Response Surface Design for Removal of Lead by Differ-ent Lactic Acid Bacteria. Health Scope, 9(3): e101049.
18. Hooshdar P, et al (2020). A Review on Pro-duction of Exopolysaccharide and Bio-film in Probiotics like Lactobacilli and Methods of Analysis. Biointerface Res Appl Chem, 10(5): 6058-75.
19. Tallon R, Bressollier P, Urdaci MC (2003). Isolation and characterization of two ex-opolysaccharides produced by Lactobacil-lus plantarum EP56. Res Microbiol, 154(10): 705-12.
20. Khan R, Dona J (2015). Extraction and op-timization of exopolysaccharide produc-tion from lactic acid bacteria and its ap-plication in biosorption of chromium from waste water. Eur J Acad Res, 3(4): 4576-88.
21. Sran et al (2019). Production, characteriza-tion and bio-emulsifying activity of a novel thermostable exopolysaccharide produced by a marine strain of Rhodobac-ter johrii CDR-SL 7Cii. Int J Biol Macromol, 127:240–249.
22. Yalcinkaya Y, et al (2002). Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turk J Chem, 26(3): 441-52.
23. Zhang Z, et al (2017). A novel exopolysac-charide with metal adsorption capacity produced by a marine bacterium Alter-omonas sp JL2810. Mar Drugs, 15(6): 175.
24. Raoov M, Mohamad S, Abas MR (2013). Removal of 2, 4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, ther-modynamics. J Hazard Mater, 263 Pt 2: 501-16.
25. Lazaridis N, Asouhidou D (2003). Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite. Water Res, 37(12): 2875-82.
26. Xu R, Zhou Q, Li F, Zhang B (2013). Lac-case immobilization on chitosan/poly (vinyl alcohol) composite nanofibrous membranes for 2, 4-dichlorophenol re-moval. Chem Eng J, 222: 321-9.
27. Aravindhan R, et al (2004). Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ Sci Technol, 38(1): 300-6.
28. Zoetendal EG, Vaughan EE, De Vos WM (2006). A microbial world within us. Mol Microbiol, 59(6):1639-50.
29. Amatayakul T, Halmos A, Sherkat F, Shah N (2006). Physical characteristics of yo-ghurts made using exopolysaccharide-producing starter cultures and varying ca-sein to whey protein ratios. Int Dairy J, 16(1): 40-51.
30. Halttunen T, Salminen S, Tahvonen R (2007). Rapid removal of lead and cadmi-um from water by specific lactic acid bac-teria. Int J Food Microbiol, 114(1): 30-5.
31. Schär-Zammaretti P, Ubbink J (2003). The cell wall of lactic acid bacteria: surface constituents and macromolecular con-formations. Biophys J, 85(6): 4076-92.
32. Landersjö C, Yang Z, Huttunen E, Wid-malm G (2002). Structural Studies of the Exopolysaccharide Produced by Lactoba-cillus rhamnosus strain GG (ATCC 53103). Biomacromolecules, 3(4): 880-4.
33. Hao Z, Chen S, Wilson DB (1999). Cloning, expression, and characterization of cad-mium and manganese uptake genes from Lactobacillus plantarum. Appl Environ Microbi-ol, 65(11): 4746-52.
34. Gao J-F, et al (2011). Contributions of func-tional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules. Bioresour Technol, 102(2): 805-13.
35. Sarı A, Tuzen M (2009). Equilibrium, ther-modynamic and kinetic studies on alumi-num biosorption from aqueous solution by brown algae (Padina pavonica) bio-mass. J Hazard Mater, 171(1-3): 973-9.
36. Li B, Jin D, et al (2017). In vitro and in vivo evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1. 0207 for the allevia-tive effect on lead toxicity. Nutrients, 9(8): 845.
37. Lalhruaitluanga H, Jayaram K, Prasad M, Kumar K (2010). Lead (II) adsorption from aqueous solutions by raw and acti-vated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. J Hazard Mater, 175(1-3): 311-8.
38. Seki H, Noguchi A, Suzuki A, Inoue N (2006). Biosorption of heavy metals onto Gram-positive bacteria, Lactobacillus planta-rum and Micrococcus luteus. Kagaku Kogaku Ronbunshu, 32(4): 352-5.
39. Ibrahim F, Halttunen T, Tahvonen R, Salminen S (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol, 52(9): 877-85.
40. El-Sayed MT (2013). Removal of lead (II) by Saccharomyces cerevisiae AUMC 3875. Ann Microbiol, 63(4): 1459-70.
41. Dai Q, Bian X, Li R, Jiang C, Ge J, Li B, et al (2019). Biosorption of lead (II) from aqueous solution by lactic acid bacteria. Water Sci Technol, 79(4): 627-34.
42. Halttunen T, Salminen S, Meriluoto J, Tah-vonen R, Lertola K (2008). Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int J Food Microbiol, 125(2): 170-5.
43. Hii S-L, Yong S-Y, Wong C-L (2009). Re-moval of rhodamine B from aqueous so-lution by sorption on Turbinaria conoides (Phaeophyta). J Appl Phycol, 21(5): 625-31.
44. Siva Kumar N, et al (2019). Equilibrium and kinetic studies of biosorptive removal of 2, 4, 6-trichlorophenol from aqueous so-lutions using untreated agro-waste pine cone biomass. Processes, 7(10): 757.
45. Rubin E, et al (2005). Removal of methylene blue from aqueous solutions using as bi-osorbent Sargassum muticum: an inva-sive macroalga in Europe. J Chem Technol Biotechnol, 80(3): 291-8.
46. Esposito A, Pagnanelli F, Vegliò F (2002). pH-related equilibria models for biosorp-tion in single metal systems. Chem Eng Sci, 57(3): 307-13.
47. Ngwenya BT, Sutherland IW, Kennedy L (2003). Comparison of the acid-base be-haviour and metal adsorption characteris-tics of a gram-negative bacterium with other strains. Appl Geochemistry, 18(4): 527-38.
48. Kermani M, et al (2006). Removal of phenol from aqueous solutions by rice husk ash and activated carbon. Pak J Biol Sci, 9(10): 1905-10.
49. Bayramoglu G, et al (2009). Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresour Technol, 100(10): 2685-91.
50. Hall KR, et al (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem, 5(2): 212-23.
51. Shokohi R, et al (2011). Removal of Acid Blue 113 (AB113) dye from aqueous solu-tion by adsorption onto activated red mud: a kinetic and equilibrium study. Sci J Kurdistan Univ Medical Sci, 16(2): 55-65.
52. Zaini MAA, et al (2009). Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. J Haz-ard Mater, 170 (2-3): 1119-24.
53. Tafakori V, Zadmard R, Tabandeh F et al (2017). Equilibrium isotherm, kinetic modeling, optimization, and characteriza-tion studies of cadmium adsorption by surface-engineered Escherichia coli. Iran Biomed J, 21(6):380-91.
54. Özdemir S, Kılınç E, Poli A, Nicolaus B (2013). Biosorption of heavy metals (Cd2+, Cu2+, Co2+and Mn2+) by thermo-philic bacteria, Geobacillus thermantarcti-cus and Anoxybacillus amylolyticus: equi-librium and kinetic studies. Bioremediation Journal, 17(2): 86-96.
55. Kanamarlapudi SLRK, Muddada S (2019). Structural changes of Bacillus subtilis bio-mass on biosorption of iron (II) from aqueous solutions: isotherm and kinetic studies. Pol J Microbiol, 68(4): 549-558.
56. Yilmaz M, Tay T, Kivanc M, Turk H (2010). Removal of corper (II) Ions from aque-ous solution by a lactic acid bacterium. Braz J Chem Eng, 27: 10.1590/S0104-66322010000200009
57. Sethuraman P, Kumar MD (2011). Biosorp-tion kinetics of Cu (II) ions removal from aqueous solution using bacteria. Pak J Biol Sci, 14(5): 327-35.
58. Martins R, Vilar V, Boaventura R (2014). Ki-netic modelling of cadmium and lead re-moval by aquatic mosses. Braz J Chem Eng, 31(1): 229-42.
Files
IssueVol 52 No 3 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijph.v52i3.12145
Keywords
Cadmium Lead L. fermentum 6b Adsorption process Extracted exopolysaccharide

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kasra Kermanshahi R, Jahed Khaniki G, Goudarzi L. Biosorption of Cd+2 and Pb+2 by Exopolysaccharide Extracted from Lactobacillus fermentum 6b; Adsorption Isotherm and Kinetic Studies. Iran J Public Health. 2023;52(3):622-632.