Original Article

Lipid Profile, Renal Function Tests and Inflammatory Markers in Algerian Type 2 Diabetic Patients

Abstract

Background: Several studies show the relationship between chronic hyperglycemia and the appearance of macroangiopathy, microangiopathy and neuropathy. The major objective of this study was to investigate the serum lipids, renal function tests and inflammatory markersin type 2 diabetes patients.

Methods: The study lasted eight years between Feb-2013 and Mar-2021 (Mascara, Algeria). Overall,197 patients and 197 controls were selected during general medicine examinations;enzymatic and immunoturbidimetric colorimetric methods were used to determine the serum levels offasting glycaemia, total cholesterol, highdensity lipoprotein cholesterol, triglycerides, low-density lipoprotein cholesterol, fibrinogen, urea, acid uric, albumin and creatinine, C protein reactive; the glomerular filtration rate is calculated according to the MDRD equation; the glycatedhaemoglobin levels were determined by an ion-exchange resin separation method.

Results: Patients had 2.44 times higher fasting glycaemia, 1.71 times higher HbA1c, 1.23 times higher body mass index, 1.30 times higher waist circumference and 1.25times higher systolic blood pressure than control subjects; the findings of the present study also indicate that a significant differences between patients and controls were observed regarding triglycerides (P=0.008), LDL-cholesterol(P=0.011), HDL-cholesterol (P=0.009), urea (P=0.013), uric acid (P=0.015), creatinine (P=0.007), glomerular filtration rate (P=0.006), albumin (P=0.018),fibrinogen (P=0.023) and C protein reactive (P=0.019).

Conclusion: All this metabolic disordercould facilitate the appearance of serious complications in future.

1. Defronzo RA, Ferrannini E, Zimmet P, Al-berti KGMM, (2015). International Text-book of Diabetes Mellitus. 4th ed. Oxford UK: Wiley-Blackwell. 4th ed. Oxford UK: Wiley-Blackwell. Frontmatter - Interna-tional Textbook of Diabetes Mellitus - Wiley Online Library
2. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al (2017). IDF Diabetes At-las: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract, 128: 40-50.
3. Zimmet P, Alberti KG, Magliano DJ, et al (2016). Diabetes mellitus statistics on prevalence and mortality: facts and falla-cies. Nat Rev Endocrinol, 12(10): 616-22.
4. Anjana RM, Deepa M, Pradeepa R, et al (2017). Prevalence of diabetes and predi-abetes in 15 states of India: results from the ICMR–INDIAB population-based cross-sectional study. Lancet Diabetes Endo-crinol, 5(8): 585-96.
5. World Health Organization (2016). Diabetes country profiles. Prevalence of diabetes and related risk factors in Iran. https://cdn.who.int/media/docs/default-source/country-pro-files/diabetes/irn_en.pdf?sfvrsn=5d4dafb7_38&download=true
6. World Health Organization (2016). Diabetes country profiles. Prevalence of diabetes and related risk factors in Algeria. https://www.who.int/teams/noncommunicable-diseases/surveillance/data/diabetes-profiles
7. Dunkler D, Kohl M, Heinze G, et al (2015). Modifiable lifestyle and social factors af-fect chronic kidney disease in high-risk individuals with type 2 diabetes mellitus. Kidney Int, 87(4): 784-91.
8. Staplin N, Haynes R, Herrington WG, et al (2016). Smoking and adverse outcomes in patients with CKD: the Study of Heart and Renal Protection (SHARP). Am J Kid-ney Dis, 68(3): 371-80.
9. Volaco A, Cavalcanti AM, Précoma DB (2018). Socioeconomic status: the missing link between obesity and diabetes melli-tus? Curr Diabetes Rev, 14(4): 321-26.
10. German CA, LaugheyB, Bertoni AG, et al (2020). Associations between BMI, waist circumference, central obesity and out-comes in type II diabetes mellitus: The ACCORD Trial. J Diabetes Complications, 34(3): 107499.
11. Chen MQ, Shi WR, Wang HY, et al (2021). Interaction of General or Central Obesity and Hypertension on Diabetes: Sex-Specific Differences in a Rural Population in Northeast China. Diabetes Metab Syndr Obes, 14:1061-1072.
12. Ting MK, Liao PJ, Wu IW, et al (2018). Pre-dicting type 2 diabetes mellitus occurrence using three-dimensional anthropometric body surface scanning measurements: a prospective cohort study. J Diabetes Res, 2018:6742384.
13. Chawla A, Chawla R, Jaggi S (2016). Micro-vasular and macrovascular complications in diabetes mellitus: distinct or continu-um? Indian J Endocrinol Metab, 20(4): 546-51.
14. Shi Y, Vanhoutte PM (2017). Macro‐and microvascular endothelial dysfunction in diabetes. J Diabetes, 9(5): 434-49.
15. Sunil B, Ashraf AP (2020). Dyslipidemia in pediatric type 2 diabetesmellitus. Curr Di-ab Rep, 20(10): 53.
16. Găman MA, Cozma MA, Dobrică EC, et al (2020). Dyslipidemia: a trigger for coro-nary heart disease in Romanian patients with diabetes. Metabolites, 10(5): 195.
17. Bello-Ovosi BO, Ovosi JO, Ogunsina MA, et al (2019). Prevalence and pattern of dyslipidemia in patients with type 2 diabe-tes mellitus in Zaria, Northwestern Nige-ria. Pan Afr Med J, 34:123.
18. Zhang XX, Kong J, Yun K (2020). Preva-lence of diabetic nephropathy among pa-tients with type 2 diabetes mellitus in China: a meta-analysis of observational studies. J Diabetes Res, 2020:2315607.
19. Song KH, Jeong JS, Kim MK, et al (2019). Discordance in risk factors for the pro-gression of diabetic retinopathy and dia-betic nephropathy in patients with type 2 diabetes mellitus. J Diabetes Investig, 10(3): 745-52.
20. Elimam H, Abdulla AM, Taha IM (2019). Inflammatory markers and control of type 2 diabetes mellitus. Diabetes Metab Syndr, 13(1): 800-804.
21. Bao X, Borné Y, Johnson L, et al (2018). Comparing the inflammatory profiles for incidence of diabetes mellitus and cardio-vascular diseases: a prospective study ex-ploring the ‘common soil’hypothesis. Cardiovasc Diabetol, 17(1):87.
22. World Health Organization (1999). Defini-tion, Diagnosis, and Classification of Di-abetes Mellitus and Its Complications: Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva, World Health Organi-zation.
23. Levey AS, Coresh J, Balk E, et al (2003). Na-tional Kidney Foundation Practice Guide-lines for Chronic Kidney Disease: Evalu-ation, Classification, and Stratification. Ann Intern Med, 139(2): 137-47.
24. Sanz M, Ceriello A, Buysschaert, et al (2018). Scientific evidence on the links between periodontal diseases and diabetes: Con-sensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Diabetes Res Clin Pract, 137: 231-41.
25. Walraven I, Mast MR, Hoekstra T, et al (2015). Distinct HbA1c trajectories in a type 2 diabetes cohort. Acta Diabetol, 52(2): 267-75.
26. Parry HM, Deshmukh H, Levin D, et al (2015). Both high and low HbA1c predict incident heart failure in type 2 diabetes mellitus. Circ Heart Fail, 8(2): 236-42.
27. Vijayakumar P, Nelson RG, Hanson RL, et al (2017). HbA1c and the prediction of type 2 diabetes in children and adults. Di-abetes Care, 40(1): 16-21.
28. Skriver MV, Sandbæk A, Kristensen JK, et al (2015). Relationship of HbA1c variability, absolute changes in HbA1c, and all-cause mortality in type 2 diabetes: a Danish population-based prospective observa-tional study. BMJ Open Diabetes Res Care, 3(1): e000060.
29. Luo J, Hendryx M, Laddu D, et al (2019). Racial and ethnic differences in anthro-pometric measures as risk factors for di-abetes. Diabetes Care, 42(1): 126-33.
30. Wagnew F, Eshetie S, Kibret GD, et al (2018). Diabetic nephropathy and hyper-tension in diabetes patients of sub-Saharan countries: a systematic review and meta-analysis. BMC Res Notes, 11(1): 565.
31. Tsimihodimos V, Gonzalez-Villalpando C, Meigs JB, et al (2018). Hypertension and diabetes mellitus: coprediction and time trajectories. Hypertension, 71(3): 422-28.
32. Alloubani A, Saleh A, Abdelhafiz I (2018). Hypertension and diabetes mellitus as a predictive risk factors for stroke. Diabetes Metab Syndr, 12(4): 577-84.
33. Jia G, Sowers JR (2021). Hypertension in Diabetes: An Update of Basic Mecha-nisms and Clinical Disease. Hypertension, 78(5): 1197-205.
34. Brunzell JD (2007). Clinical practice, Hyper-triglyceridemia. N Engl J Med, 357(10): 1009-17.
35. Heidemann C (2011). Dietary patterns are associated with cardiometabolic risk fac-tors in a representative study population of German adults. Br J Nutr, 106(8): 1253-62.
36. Chehade JM, Gladysz M, Mooradian AD (2013). Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and man-agement. Drugs, 73(4): 327-39.
37. Adiels M, Boren J, Caslake MJ, et al (2005). Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol, 25(8): 1697-703.
38. Gonzalez-Baro MR, Lewin TM, Coleman RA (2007). Regulation of Triglyceride Me-tabolism: Function of mitochondrial GPAT1 in the regulation of triacylglycerol biosynthesis and insulin action. Am J Physiol Gastrointest Liver Physiol, 292(5): G1195-9.
39. Akhtar DH, Iqbal U, Vazquez-Montesino LM, et al (2019). Pathogenesis of insulin resistance and atherogenic dyslipidemia in nonalcoholic fatty liver disease. J Clin Transl Hepatol, 7(4): 362–370.
40. Bjornstad P, Eckel RH (2018). Pathogenesis of lipid disorders in insulin resistance: a brief review. Curr Diab Rep, 18(12): 127.
41. Grundy SM (2006). Atherogenic dyslipidem-ia associated with metabolic syndrome and insulin resistance. Clin Cornerstone, 8 Suppl 1:S21-7.
42. Schofield JD, Liu Y, Rao-Balakrishna P, et al (2016). Diabetes dyslipidemia. Diabetes Ther, 7(2): 203-19.
43. Mooradian AD (2009). Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endo-crinol Metab, 5(3): 150-9.
44. Wu Z, Huang Z, Lichtenstein AH, et al (2021). Different associations between HDL cholesterol and cardiovascular dis-eases in people with diabetes mellitus and people without diabetes mellitus: a pro-spective community-based study. Am J Clin Nutr, 114(3): 907-13.
45. Warraich HJ, Wong ND, Rana JS (2015). Role for combination therapy in diabetic dyslipidemia. Curr Cardiol Rep, 17(5): 1-9.
46. Kikkawa K, Nakajima K, Shimomura Y, et al (2015). Small dense LDL cholesterol measured by homogeneous assay in Jap-anese healthy controls, metabolic syn-drome and diabetes patients with or without a fatty liver. Clin Chim Acta, 438: 70-79.
47. Jin JL, Zhang HW, Cao YX, et al (2020). Association of small dense low-density lipoprotein with cardiovascular outcome in patients with coronary artery disease and diabetes: a prospective, observational cohort study. Cardiovasc Diabetol, 19(1): 45.
48. Warraich HJ, Rana JS (2017). Dyslipidemia in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol, 6(1): 27-32.
49. Kim CJ (2013). Management of hypertri-glyceridemia for prevention of cardiovas-cular diseases. J Lipid Atheroscler, 2(2): 53-60.
50. Nikolic D, Giglio RV, Rizvi AA, et al (2021). Liraglutide reduces carotid intima-media thickness by reducing small dense low-density lipoproteins in a real-world set-ting of patients with type 2 diabetes: A novel anti-atherogenic effect. Diabetes Ther, 12: 261-74.
51. Sobenin IA, Galitsyna EV, Grechko AV, et al (2017). Small dense and desialylated low density lipoprotein in diabetic pa-tients. Vessel Plus, 1: 29-37.
52. Jaiswal M, Schinske A, Pop-Busui R (2014). Lipids and lipid management in diabetes. Best Pract Res Clin Endocrinol Metab, 28(3): 325-38.
53. Betteridge DJ (2011). Lipid control in pa-tients with diabetes mellitus. Nat Rev Car-diol, 8(5): 278-290.
54. Haase CL, Tybjærg-Hansen A, Nordest-gaard BG, et al (2015). HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes, 64(9): 3328-33.
55. Gross JL, De Azevedo MJ, Silveiro SP, et al (2005). Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care, 28(1): 164-76.
56. Gagliardi AC, Miname MH, Santos RD (2009). Uric acid: A marker of increased cardiovascular risk. Atherosclerosis, 202(1): 11-17.
57. Stevens LA, Coresh J, Greene T, et al (2006). Assessing kidney function—measured and estimated glomerular filtra-tion rate. N Engl J Med, 354(23): 2473-83.
58. Zhuo L, Zou G, Li W, et al (2013). Preva-lence of diabetic nephropathy complicat-ing non-diabetic renal disease among Chinese patients with type 2 diabetes mellitus. Eur J Med Res, 18(1):4.
59. Chen J, Muntner P, Hamm LL (2004). The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med, 140(3): 167-74.
60. Vinod PB (2012). Pathophysiology of dia-betic nephropathy. Clin Nephrol, 1(2): 121-26.
61. Kanwar YS, Wada J, Sun L, et al (2008). Di-abetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (May-wood), 233(1): 4-11.
62. Thorn LM, Forsblom J, Fagerudd MC, et al (2005). Groop : Metabolic syndrome in type 1 diabetes : association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care, 28(8): 2019-24.
63. Czajka A, Malik AN (2016). Hyperglycemia induced damage to mitochondrial respi-ration in renal mesangial and tubular cells: Implications for diabetic nephropathy. Redox Biol, 10: 100-107.
64. Navarro-González JF, Mora-Fernández C, De Fuentes MM, et al (2011). Inflamma-tory molecules and pathways in the path-ogenesis of diabetic nephropathy. Nat Rev Nephrol, 7(6): 327-40.
65. Schneider DJ (2005). Abnormalities of co-agulation, platelet function, and fibrinoly-sis associated with syndromes of insulin resistance. Coron Artery Dis, 16(8): 473-76.
66. Ang L, Palakodeti V, Khalid A, et al (2008). Elevated plasma fibrinogen and diabetes mellitus are associated with lower inhibi-tion of platelet reactivity with clopidogrel. J Am Coll Cardiol, 52(13): 1052-59.
67. Zhang J, Wang Y, Zhang R, et al (2018). Se-rum fibrinogen predicts diabetic ESRD in patients with type 2 diabetes mellitus. Di-abetes Res Clin Pract, 141: 1-9.
68. Lee CC, Adler AI, Sandhu MS, et al (2009). Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia, 52(6): 1040-47.
69. Koenig W (2005). Predicting risk and treat-ment benefit in atherosclerosis: the role of Creactive protein. Int J Cardiol, 98(2): 199-206.
70. Ebrahimi M, Heidari, Bakavoli AR, Shoeibi S, et al (2016). Association of serum hs-CRP levels with the presence of obesity, diabetes mellitus, and other cardiovascu-lar risk factors. J Clin Lab Anal, 30(5): 672-6.
71. Verhagen SN, Wassink AM, Graaf Y, et al (2013). C-reactive protein and incident di-abetes in patients with arterial disease. Eur J Clin Invest, 43(10): 1052-59.
72. Cheng L, Zhuang H, Yang S, et al (2018). Exposing the causal effect of C-reactive protein on the risk of type 2 diabetes mellitus: a Mendelian randomization study. Front Genet, 9: 657.
73. Parrinello CM, Lutsey PL, Ballantyne CM, et al (2015). Six-year change in high-sensitivity C-reactive protein and risk of diabetes, cardiovascular disease, and mor-tality. Am Heart J, 170(2): 380-9.
74. Tutuncu Y, Satman I, Celik S, et al (2016). A comparison of hs-CRP levels in new dia-betes groups diagnosed based on FPG, 2-hPG, or HbA1c criteria. J Diabetes Res, 2016:5827041.
Files
IssueVol 52 No 4 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijph.v52i4.12441
Keywords
C-reactive protein Glomerular filtration rate Serum lipids Type 2 diabetes

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hadjari M, Bereksi K. Lipid Profile, Renal Function Tests and Inflammatory Markers in Algerian Type 2 Diabetic Patients. Iran J Public Health. 2023;52(4):732-740.