Methicillin-Resistant Staphylococcus aurous: Epidemiology, Transmission and New Alternative Therapies: A Narrative Review
Abstract
Over the last decade, we were facing medical struggle by the emergence of multi-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). MRSA infections are still causing a growing global concern due to the rapid adaptive multidrug resistance to conventional antibiotics in human, community and veterinary medicine. Here we provide an overview about MRSA epidemiology, transmission and alternative potential treatments particularly new discovered phytochemicals with biological activity. In this narrative review, bibliographic data was collected from literature search databases: Google Scholar, web of science and PubMed/MEDLINE during recent years (2016 to 2021). MRSA is responsible of wide spectrum life threatening infections such us septicemia, endocarditis, and wound infections. It has epidemic potential in hospitals, that is responsible of most nosocomial infections leading to mortality and constitute a real burden for the healthcare systems. Effective preventive strategies for management of MRSA are highly required moreover, the identification and development of novel drugs or active biomolecules through phytochemicals are time challenging to face new resistant strains.
2. Schmithausen R, Schulze-GeisthoevelS, Heinemann C, et al (2018). Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Re-view from a One Health Perspective. Sustainability, 10(11): 3967.
3. Rasigade JP, Vandenesch F (2014). Staphylo-coccus aureus: A pathogen with still unre-solved issues. Infect Genet Evol, 21: 510–514.
4. Rayner C, Munckhof WJ (2005). Antibiotics currently used in the treatment of infec-tions caused by Staphylococcus aureus. Intern Med J, 35 Suppl 2:S3–16.
5. Ventola CL (2015). The antibiotic resistance crisis: part 1: causes and threats. P T, 40(4):277-283.
6. KimJ (2009). Understanding the Evolution of Methicillin-Resistant Staphylococcus au-reus. Clin Microbiol Newsl, 31(3): 17–23.
7. Lowy FD (2003). Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest, 111(9):1265-1273.
8. Foster TJ (2017). Antibiotic resistance in Staphylococcus aureus. Current status and fu-ture prospects. FEMS Microbiol Rev, 41(3):430-449.
9. Lakhundi S, Zhang K (2018). Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epi-demiology. Clin Microbiol Rev, 31(4):e00020-18.
10. Merghni A, Noumi E, Hadded O, et al (2018). Assessment of the antibiofilm and antiquorum sensing activities of Eu-calyptus globulus essential oil and its main component 1,8-cineole against methicil-lin-resistant Staphylococcus aureus strains. Microb Pathog, 118:74-80.
11. Harkins CP, Pichon B, Doumith M, et al (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduc-tion of methicillin into clinical practice. Genome Biol, 18(1):130.
12. Paterson GK, Morgan FJE, Harrison EM, et al (2014). Prevalence and characteriza-tion of human mecC methicillin-resistant Staphylococcus aureus isolates in England. J Antimicrob Chemother, 69(4):907–910.
13. Paterson GK (2020). Low prevalence of livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 and mecC MRSA among human isolates in North-West England. J Appl Microbiol, 128(6):1785-1792.
14. Reuter S, Török ME, Holden MT, et al (2016). Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Res, 26(2):263-70.
15. Silva V, Almeida F, Carvalho JA, et al (2020). Emergence of community-acquired methicillin-resistant Staphylococ-cus aureus EMRSA-15 clone as the pre-dominant cause of diabetic foot ulcer infections in Portugal. Eur J Clin Microbi-ol Infect Dis, 39(1):179-186.
16. Mourabit N, Arakrak A, Bakkali M, et al (2017). Nasal carriage of sequence type 22 MRSA and livestock-associated ST398 clones in Tangier, Morocco. J Infect Dev Ctries, 11(7):536-542.
17. Ceballos S, Aspiroz C, Ruiz-Ripa L, et al (2019). Study Group of clinical LA-MRSA. Epidemiology of MRSA CC398 in hospitals located in Spanish regions with different pig-farming densities: a multicentre study. J Antimicrob Chemother, 74(8): 2157–2161.
18. David MZ, Daum RS (2010). Community-associated methicillin-resistant Staphylo-coccus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev, 23(3):616-687.
19. Kong EF, Johnson JK, Jabra-Rizk MA (2016). Community-Associated Methicil-lin-Resistant Staphylococcus aureus: An En-emy amidst Us. PLoS Pathog, 12(10):e1005837.
20. Armand-Lefevre L, Ruimy R, Andremont A (2005). Clonal comparison of Staphylococ-cus aureus isolates from healthy pig farm-ers, human controls, and pigs. Emerg In-fect Dis, 11(5):711-4.
21. Goudarzi M, Seyedjavadi SS, Nasiri MJ, et al (2017). Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCC-mec, spa, and agr locustypes analysis. MicrobPathog, 104:328-335.
22. Crombé F, Argudín MA, Vanderhaeghen W, et al (2013). Transmission Dynamics of Methicillin-Resistant Staphylococcus au-reus in Pigs. Front Microbiol, 4:57.
23. Maree CL, Daum RS, Boyle-Vavra S, et al (2007). Community associated methicil-lin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg Infect Dis, 13(2): 236–42.
24. Devriese LA, Van Damme LR, Fameree L (1972). Methicillin (cloxacillin)-resistant Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralbl Vet-erinarmed B, 19(7): 598–605.
25. Van Rijen MM, Van Keulen PH, Kluytmans JA (2008). Increase in a Dutch hospital of methicillin-resistant Staphylococcus au-reus related to animal farming. Clin Infect Dis, 46(2):261-3.
26. Sahibzada S, Abraham S, Coombs GW, et al (2017). Transmission of highly viru-lent community-associated MRSA ST93 and livestock-associated MRSA ST398 between humans and pigs in Australia. Sci Rep, 7(1):5273.
27. Parisi A, Caruso M, Normanno G, et al (2019). MRSA in swine, farmers and ab-attoir workers in Southern Italy. Food Mi-crobiol. 82:287-293.
28. Haregua T (2019). Review on Principles of Zoonoses Prevention, Control and Eradication. Am J Biomed Sci& Res, 3(2): AJBSR.MS.ID.000660.
29. Cuny C, Köck R, Witte W (2013). Livestock associated MRSA (LA-MRSA) and its rel-evance for humans in Germany. Int J Med Microbiol. 303(6-7):331-7.
30. Noumi E, Snoussi M, Merghni A, et al (2017). Phytochemical composition, anti-biofilm and anti-quorum sensing poten-tial of fruit, stem and leaves of Salva-dorapersica L. methanolic extracts. Microb Pathog, 109:169-176.
31. Alminderej F, Bakari S, Almundarij TI, Snoussi M, et al (2021). Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essen-tial Oil and In Silico Study on S. au-reustyrosyl-tRNASynthetase Protein. Plants (Basel), 10(2):205.
32. Kyaw BM, Arora S, Lim CS (2012). Bacteri-cidal antibiotic-phytochemical combi-nations against methicillin resistant Staphylococcus aureus. Braz J Microbiol, 43(3):938-945.
33. Chew YL, Mahadi AM, Wong KM, Goh JK (2018). Anti-methicillin-resistance Staphy-lococcus aureus (MRSA) compounds from Bauhinia kockianaKorth. And their mechanism of antibacterial activity. BMC Complement Altern Med, 18(1):70.
34. Maqbul SM, Ali MA, Aejaz AK, et al (2020). Determination of Phytochemical Prop-erties and Antimicrobial Activities of Oregano vulgare against MRSA. Asian J Pharm, 14 (3): 362.
35. Kot B, Wierzchowska K, Grużewska A, Lohinau D (2018). The effects of select-ed phytochemicals on biofilm formed by five methicillin-resistant Staphylococcus aureus. Nat Prod Res, 32(11):1299-1302.
36. Nwabor OF, Leejae S, Voravuthikunchai SP (2021). Rhodomyrtone Accumulates in Bacterial Cell Wall and Cell Membrane and Inhibits the Synthesis of Multiple Cellular Macromolecules in Epidemic Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel), 10(5):543.
37. Mingeot-Leclercq MP, Décout JL (2016). Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of am-phiphilic aminoglycosides. Med Chem Comm, (4):586–611.
38. Lotha R, Shamprasad BR, Sundaramoorthy NS, Nagarajan S, Sivasubramanian A (2019). Biogenic phytochemicals (cassi-nopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@CuNPs) in-hibits MRSA biofilms. Microb Pathog, 132:178-187.
39. Han N, Huang X, Tian X, et al (2021). Self-assembled nanoparticles of natural phy-tochemicals (berberine and 3,4,5-methoxycinnamic acid) originated from traditional Chinese medicine for inhib-iting multidrug-resistant Staphylococcus au-reus. Curr Drug Deliv, 18(7):914-921 .10.2174/1567201817666201124121918.
40. Huang X, Wang P, Li T, et al (2020). Self-Assemblies Based on Traditional Medi-cine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus. ACS Appl Mater Interfaces, 12(1):227-237.
41. Aygün A, Gülbağça F, Nas MS, et al (2020). Biological synthesis of silver nanoparti-cles using Rheum ribes and evaluation of their anticarcinogenic and antimi-crobial potential: A novel approach in phytonanotechnology. J Pharm Biomed Anal, 179:113012.
Files | ||
Issue | Vol 52 No 8 (2023) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijph.v52i8.13395 | |
Keywords | ||
Methicillin-resistant Staphylococcus aureus (MRSA) Alternative treatments |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |