Review Article

PiRNA Biogenesis and Their Role in Human Cancers and Other Diseases: A Narrative Review

Abstract

PIWI-interacting RNAs (piRNAs) with the length of approximately 26-30 nucleotides are a distinct class of small non-coding RNAs that mainly expressed in the animal gonads. Other small RNAs originate from double stranded precursors but piRNAs derive from long single-stranded primary transcripts, which expressed from distinct genomic regions. piRNAs are involved in silencing of mobile elements named transposons and their main role is germline maintenance. Recent studies have opened new insights on biological and clinical significance of piRNAs in various diseases. Abnormal expression of piRNAs is a remarkable feature in many diseases especially human cancers, which emphasize on their important biological role in disease progression. Furthermore, they can be served as biomarkers and therapeutic targets for tumor diagnostics and treatment. In this review, we explained piRNAs characteristics, biogenesis process and functions, discuss new findings about involvement of these elements in various disease and their potential to be used as diagnostic biomarkers.

1. Brennecke J, Aravin AA, Stark A, et al (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 128(6):1089-103.
2. Hirakata S, Siomi MC (2016). piRNA biogen-esis in the germline: from transcription of piRNA genomic sources to piRNA matu-ration. Biochim Biophys Acta, 1859(1):82-92.
3. Bartel DP (2009). MicroRNAs: target recog-nition and regulatory functions. Cell, 136(2):215-33.
4. Malone CD, Hannon GJ (2009). Small RNAs as guardians of the genome. Cell, 136(4):656-668.
5. Siomi H, Siomi MC (2009). On the road to reading the RNA-interference code. Na-ture, 457(7228):396-404.
6. Juliano C, Wang J, Lin H (2011). Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet, 45:447-69.
7. Ishizu H, Siomi H, Siomi MC (2012). Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev, 26(21): 2361-73.
8. Pillai RS, Chuma S (2012). piRNAs and their involvement in male germline develop-ment in mice. Dev Growth Differ, 54(1):78-92.
9. Guzzardo PM, Muerdter F, Hannon GJ (2013).The piRNA pathway in flies: high-lights and future directions. Curr Opin Genet Dev, 23(1):44-52.
10. Livak KJ (1990). Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics, 124(2):303-16.
11. Saito K, Siomi MC. (2010). Small RNA-mediated quiescence of transposable ele-ments in animals. Dev Cell, 19(5):687-97.
12. Grivna ST, Beyret E, Wang Z, et al (2006). A novel class of small RNAs in mouse spermatogenic cells. Genes Dev, 20(13):1709-1714.
13. Girard A, Sachidanandam R, Hannon GJ, et al (2006). A germline-specific class of small RNAs binds mammalian Piwi pro-teins. Nature, 442(7099):199-202.
14. Slotkin RK, Martienssen R (2007). Transpos-able elements and the epigenetic regula-tion of the genome. Nat Rev Genet, 8(4):272-85.
15. Kalmykova AI, Klenov MS, Gvozdev VA (2005). Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res, 33(6):2052-9.
16. Kim VN, Han J, Siomi MC (2009). Biogene-sis of small RNAs in animals. Nat Rev Mol Cell, 10(2):126-39.
17. Malone CD, Brennecke J, Dus M, et al (2009). Specialized piRNA pathways act in germline and somatic tissues of the Dro-sophila ovary. Cell, 137(3):522-35.
18. Aravin A, Gaidatzis D, Pfeffer S, et al (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099):203-7.
19. Czech B, Malone CD, Zhou R, Stark A, et al (2008). An endogenous small interfering RNA pathway in Drosophila. Na-ture,453(7196):798-802.
20. Le Thomas A, Stuwe E, Li S, et al (2014). Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and in-ducing precursor processing. Genes Dev, 28(15):1667-1680.
21. Yamanaka S, Siomi MC, Siomi H (2014). piRNA clusters and open chromatin structure. Mob DNA, 5:22.
22. Gunawardane LS, Saito K, Nishida KM, et al (2007). A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science, 315(5818):1587-90.
23. Aravin AA, Sachidanandam R, Bourc'his D, et al (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell, 31(6):785-99.
24. Nishimasu H, Ishizu H, Saito K, et al (2012). Structure and function of Zucchini en-doribonuclease in piRNA biogenesis. Na-ture, 491(7423):284-287.
25. Watanabe T, Chuma S, Yamamoto Y, et al (2011). MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell, 20(3):364-75.
26. Mohn F, Handler D, Brennecke J (2015). piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science, 348(6236):812-817.
27. Czech B, Munafò M, Ciabrelli F, et al (2018). piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet, 52:131-157.
28. Lim AK, Kai T (2007). Unique germ-line or-ganelle, nuage, functions to repress self-ish genetic elements in Drosophila mela-nogaster. PNAS, 104(16):6714-6719.
29. Elbashir SM, Lendeckel W, Tuschl T (2001). RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev, 15(2):188-200.
30. Famuyiwa TO (2015). Impact of vitamin C on genistein induced apoptosis on pros-tate cancer. Florida Atlantic University.
31. Brower-Toland B, Findley SD, Jiang L, et al (2007). Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev, 21(18):2300-11.
32. Pal-Bhadra M, Leibovitch BA, Gandhi SG, et al (2004). Heterochromatic silencing and HP1 localization in Drosophila are de-pendent on the RNAi machinery. Science, 303(5658):669-72.
33. Klenov MS, Lavrov SA, Stolyarenko AD, et al (2007). Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res, 35(16):5430-5438.
34. Grivna ST, Pyhtila B, Lin H (2006). MIWI as-sociates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. PNAS, 103(36):13415-13420.
35. Unhavaithaya Y, Hao Y, Beyret E, et al (2009). MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem, 284(10):6507-19.
36. Grimson A, Srivastava M, Fahey B, et al (2008). Early origins and evolution of mi-croRNAs and Piwi-interacting RNAs in animals. Nature, 455(7217):1193-1197.
37. Robine N, Lau NC, Balla S, et al (2009). A broadly conserved pathway generates 3′ UTR-directed primary piRNAs. Curr Biol, 19(24):2066-76.
38. Saito K, Inagaki S, Mituyama T, et al (2009). A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Na-ture, 461(7268):1296-9.
39. Nishida KM, Saito K, Mori T, et al (2007). Gene silencing mechanisms mediated by Aubergine–piRNA complexes in Dro-sophila male gonad. RNA, 13(11):1911-22.
40. Schüpbach T, Wieschaus E (1991). Female sterile mutations on the second chromo-some of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics, 129(4):1119-1136.
41. Rouget C, Papin C, Boureux A, et al (2010). Maternal mRNA deadenylation and decay by the piRNA pathway in the early Dro-sophila embryo. Nature, 467(7319):1128-1132.
42. Klattenhoff C, Xi H, Li C, et al (2009). The Drosophila HP1 homolog Rhino is re-quired for transposon silencing and piRNA production by dual-strand clus-ters. Cell, 138(6):1137-49.
43. Rounge TB, Furu K, Skotheim RI, et al (2015). Profiling of the small RNA popu-lations in human testicular germ cell tu-mors shows global loss of piRNAs. Mol Cancer, 14(1):153.
44. Cordeiro A, Monzó M, Navarro A (2017). Non-coding RNAs in Hodgkin lym-phoma. Int J Mol Sci, 18(6):1154.
45. Daugaard I, Venø MT, Yan Y, et al (2017). Oncotarget, 8(16):27047-27061.
46. Wang Y, Gable T, Ma MZ, et al (2017). A piRNA-like small RNA induces chemo-resistance to cisplatin-based therapy by inhibiting apoptosis in lung squamous cell carcinoma. Mol Ther Nucleic Acids, 6:269-278.
47. Yin J, Jiang XY, Qi W, et al (2017). piR‐823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci, 108(9): 1746–1756
48. Enfield KS, Martinez VD, Marshall EA, et al (2016). Deregulation of small non-coding RNAs at the DLK1-DIO3 imprinted lo-cus predicts lung cancer patient outcome. Oncotarget, 7(49): 80957–80966.
49. Han YN, Li Y, Xia SQ, et al (2017). PIWI proteins and PIWI-interacting RNA: emerging roles in cancer. Cell Physiol Bio-chem, 44(1):1-20.
50. Cheng J, Deng H, Xiao B, et al (2012). piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric can-cer cells. Cancer Lett, 315(1):12-7.
51. Cui L, Lou Y, Zhang X, et al (2011). Detec-tion of circulating tumor cells in peripher-al blood from patients with gastric cancer using piRNAs as markers. Clin biochem, 44(13):1050-1057.
52. Li PF, Chen SC, Xia T, et al (2014). Non-coding RNAs and gastric cancer. World J Gastroenterol, 20(18):5411.
53. Yan H, Wu QL, Sun CY, et al (2015). piR-NA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia, 29(1):196-206.
54. Su JF, Zhao F, Gao ZW, et al (2020). piR-823 demonstrates tumor oncogenic activity in esophageal squamous cell carcinoma through DNA methylation induction via DNA methyltransferase 3B. Pathol Res Pract, 216(4):152848.
55. Malik SS, Masood N, Sherrard A, et al (2019). Small non-coding RNAs as a tool for personal-ized therapy in familial cancers. AGO-Driven Non-Coding RNAs. Academic Press.
56. Lin X, Xia Y, Hu D, et al (2013). Transcrip-tome wide piRNA profiling in human gastric cancer. Oncol Rep, 41(5):3089-3099.
57. Fu A, Jacobs DI, Hoffman AE, et al (2015). PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by re-modeling the cancer epigenome. Carcino-genesis, 36(10):1094-102.
58. Law P T-Y, Qin H, Ching A K-K, et al (2013). Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol, 58(6):1165-73.
59. Blandin Knight S, Crosbie PA, Balata H, et al (2017). Progress and prospects of early detection in lung cancer. Open biol, 7(9):170070.
60. Mei Y, Wang Y, Kumari P, et al (2015). A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun, 6:7316.
61. Neisch AL, Fehon RG (2011). Ezrin, Radixin and Moesin: key regulators of mem-brane–cortex interactions and signaling. Curr Opin Cell Biol, 23(4):377-82.
62. McClatchey AI, Fehon RG (2009). Merlin and the ERM proteins–regulators of re-ceptor distribution and signaling at the cell cortex. Trends Cell Biol, 19(5):198-206.
63. Chu H, Xia L, Qiu X, et al (2015). Genetic variants in noncoding PIWI‐interacting RNA and colorectal cancer risk. Cancer, 121(12):2044-52.
64. Jacobs DI, Qin Q, Lerro MC, et al (2016). PIWI-interacting RNAs in gliomagenesis: evidence from post-GWAS and func-tional analyses. Cancer Epidemiol Biomarkers Prev, 25(7):1073-80.
65. He X, Chen X, Zhang X, et al (2015). An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res, 43(7):3712-25.
66. Leighton LJ, Wei W, Ratnu VS, et al (2018). Hippocampal knockdown of Piwil1 and Piwil2 enhances contextual fear memory in mice. bioRxiv, 1:298570.
67. Henaoui IS, Jacovetti C, Mollet IG, et al (2017). PIWI-interacting RNAs as novel regulators of pancreatic beta cell function. Diabetologia, 60(10):1977-1986.
68. Rajan KS, Velmurugan G, Pandi G, Rama-samy S (2014). miRNA and piRNA me-diated Akt pathway in heart: antisense expands to survive. Int J Biochem Cell Biol, 55:153-6.
69. Matsui T, Tao J, del Monte F, et al (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3):330-5.
70. Stratton MS, Farina FM, Elia L (2019). Epi-genetics and vascular diseases. J Mol Cell Cardiol, 133:148-163.
71. Vella S, Gallo A, Nigro AL, et al (2016). PIWI-interacting RNA (piRNA) signa-tures in human cardiac progenitor cells. Int J Biochem Cell Biol, 76:1-11.
72. Chuang TD, Xie Y, Yan W, et al (2018). Next-generation sequencing reveals dif-ferentially expressed small noncoding RNAs in uterine leiomyoma. Fertil Steril, 109(5):919-929.
73. Wakisaka KT, Tanaka R, Hirashima T, et al (2019). Novel roles of Drosophila FUS and Aub responsible for piRNA biogen-esis in neuronal disorders. Brain Res, 1708:207-219.
74. Masuda A, Takeda JI, Okuno T, et al (2015). Position-specific binding of FUS to nas-cent RNA regulates mRNA length. Genes Dev, (10):1045-1057.
75. Bentley DL (2014). Coupling mRNA pro-cessing with transcription in time and space. Nature Reviews Genetics, 15(3):163-175.
76. Peng L, Song L, Liu C, et al (2016). piR-55490 inhibits the growth of lung carci-noma by suppressing mTOR signaling. Tumor Biol, 37(2):2749-56.
77. Müller S, Raulefs S, Bruns P, et al (2015). Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pan-creatic cancer. Mol Cancer, 14:94.
78. Busch J, Ralla B, Jung M, et al (2015). Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. Journal of Experimental & Clinical Cancer Re-search, 34(1):61.
79. Li Y, Wu X, Gao H, et al (2015). Piwi-interacting RNAs (piRNAs) are dysregu-lated in renal cell carcinoma and associat-ed with tumor metastasis and cancer-specific survival. Mol Med, 21(1):381-8.
80. Iliev R, Fedorko M, Machackova T, et al (2016). Expression levels of PIWI-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anti-cancer Res, 36(12):6419-6423.
81. Weng W, Liu N, Toiyama Y, Kusunoki M, et al (2018). Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogen-ic mediator of disease progression, and a potential prognostic biomarker in colo-rectal cancer. Mol Cancer, 17:16.
82. Han H, Fan G, Song S, et al (2021). piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood, 137(12):1603-1614.
Files
IssueVol 50 No 12 (2021) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijph.v50i12.7930
Keywords
Piwi interacting RNAs Biomarkers Small noncoding RNAs

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Shirzad H. PiRNA Biogenesis and Their Role in Human Cancers and Other Diseases: A Narrative Review. Iran J Public Health. 2021;50(12):2486-2494.