Polymeric Nanoparticles in Cancer Chemotherapy: A Narrative Review
Abstract
Chemotherapy is a common treatment technique that uses chemical drugs to kill cancer cells. This technique affects normal healthy tissues being unspecific and has toxic adverse effects. Nowadays, nanotechnology applications in cancer chemotherapy have helped to solve the uncontrolled problems involving distribution of medicine particles and other side effects. Nanoparticles (NPs) can offer significant advantages over conventional drug delivery to have magnificent properties such as controlled mode of action, various methods of administration, and the ability to transport both organic/inorganic drug particles. Special ligands containing polymeric NPs preferentially hit the tumour site because of their chemical affinity to malignant tissues. This article, reviews the fabrication, characterization, and applications of NPs being used in chemotherapy. Furthermore, different forms of polymeric and especially polymeric chemotherapy were also explored and discussed to understand better the effects of NPs on cancer chemotherapy.
2. Cheng Z, Li M, Dey R, Chen Y (2021). Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol ,14 (1):85. doi:10.1186/S13045-021-01096-0
3. Siegel RL, Miller KD, Jemal A (2019). Cancer statistics, 2019. CA Cancer J Clin,69 (1):7-34.
4. Miller KD, Nogueira L, Mariotto AB, et al (2019). Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin,69 (5):363-385.
5. Ferlay J, Colombet M, Soerjomataram I, et al (2021). Cancer statistics for the year 2020: An overview. Int J Cancer, doi:10.1002/ijc.33588
6. Roth GA, Abate D, Abate KH, et al (2018). Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392 (10159):1736-1788.
7. Dagenais GR, Leong DP, Rangarajan S, et al (2020). Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet, 395 (10226):785-794.
8. Lombardo D, Kiselev MA, Caccamo MT (2019). Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Fratoddi I, ed. J Nanomater, 2019:3702518. doi:10.1155/2019/3702518
9. Lee KL, Murray AA, Le DHT, et al (2017). Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett, 17 (7):4019-4028.
10. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017). Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer, 17 (1):20-37.
11. Tseng Y-Y, Kau Y-C, Liu S-J (2016). Advanced interstitial chemotherapy for treating malignant glioma. Expert Opin Drug Deliv, 13 (11):1533-1544.
12. Feng S-S (2011). Chemotherapeutic engineering: concept, feasibility, safety and prospect—a tribute to Shu Chien’s 80th birthday. Cell Mol Bioeng, 4 (4):708-716.
13. Trac N, Chung EJ (2021). Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Exp Biol Med (Maywood), 246 (22):2358-2371. doi:10.1177/15353702211010762
14. Sebastian R (2017). Nanomedicine - the Future of Cancer Treatment: A Review. J Cancer Prev Curr Res,8 (1):204-208.
15. Zhang D, Zhang J, Li Q, et al (2018). PH- and Enzyme-Sensitive IR820-Paclitaxel Conjugate Self-Assembled Nanovehicles for Near-Infrared Fluorescence Imaging-Guided Chemo-Photothermal Therapy. ACS Appl Mater Interfaces, 10 (36):30092-30102. doi:10.1021/acsami.8b09098
16. Gad A, Kydd J, Piel B, Rai P (2016). Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy. Int J Nanomed Nanosurg, 2 (3):10.16966/2470-3206.116. doi:10.16966/2470-3206.116
17. Lee MS, Dees EC, Wang AZ (2017). Nanoparticle-delivered chemotherapy: Old drugs in new packages. Oncology (Williston Park), 31(3):198-208.
18. Yang C Te, Ho CH, Lee HM, Ouyang LY (2018). Supplier-retailer production and inventory models with defective items and inspection errors in non-cooperative and cooperative environments. RAIRO-Oper Res, 52(2):453-471. doi:10.1051/ro/2017020
19. Sun H, Yarovoy I, Capeling M, Cheng C (2017). Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Top Curr Chem (Cham), 375 (2):24.
20. Nejabat M, Charbgoo F, Ramezani M (2017). Graphene as multi‐functional delivery platform in cancer therapy. J Biomed Mater Res Part A, 105 (8):2355-2367.
21. Ramzy L, Nasr M, Metwally AA, Awad GAS (2017). Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci, 104:273-292. doi: 10.1016/j.ejps.2017.04.005.
22. Uddin I, Venkatachalam S, Mukhopadhyay A, et al (2016). Nanomaterials in the pharmaceuticals: Occurrence, behaviour and applications. Curr Pharm Des, 22 (11):1472-1484.
23. Khodabandehloo H, Zahednasab H, Ashrafi Hafez A (2016). Nanocarriers Usage for Drug Delivery in Cancer Therapy. Iran J Cancer Prev, 9 (2):e3966. doi:10.17795/ijcp-3966
24. Mühlebach S (2018). Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach? Adv Drug Deliv Rev, 131 :122-131. doi:10.1016/j.addr.2018.06.024
25. Barabadi H, Mahjoub MA, Tajani B, et al (2019). Emerging theranostic biogenic silver nanomaterials for breast cancer: A systematic review. J Clust Sci, 30 (2):259-279.
26. He X, Deng H, Hwang H (2019). The current application of nanotechnology in food and agriculture. J Food Drug Anal, 27 (1):1-21.
27. Hossen S, Hossain MK, Basher MK, et al (2018). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res, 15:1-18.
28. Khan I, Saeed K, Khan I (2019). Nanoparticles: Properties, applications and toxicities. Arab J Chem, 12 (7):908-931.
29. Mallakpour S, Behranvand V (2016). Polymeric nanoparticles: Recent development in synthesis and application. EXPRESS Polym Lett, 10 (11):895-913.
30. Abd Ellah NH, Abouelmagd S A (2017). Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv, 14 (2):201-214. doi:10.1080/17425247.2016.1213238
31. Mansoor S, Kondiah PPD, Choonara YE, et al (2019). Polymer-based nanoparticle strategies for insulin delivery. Polymers (Basel), 11 (9):1380. doi: 10.3390/polym11091380.
32. Fortuni B, Inose T, Ricci M, et al (2019). Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Sci Rep, 9 (1):2666. doi:10.1038/s41598-019-39107-3
33. Kook JW, Kim Y, Hwang K, et al (2018). Synthesis of Poly (methyl methacrylate-co-butyl acrylate)/Perfluorosilyl methacrylate core-shell nanoparticles: Novel approach for optimization of coating process. Polymers (Basel), 10 (11):1186. doi:10.3390/polym10111186
34. Yang X, Xie Y (2021).Recent advances in polymeric core–shell nanocarriers for targeted deliveryofchemotherapeuticdrugs. Int J Pharm, 608:121094. doi:10.1016/J.ijpharm.2021.121094
35. Mauri E, Papa S, Masi M, et al (2017). Novel functionalization strategies to improve drug delivery from polymers. Expert Opin Drug Deliv,14 (11):1305-1313. doi:10.1080/17425247.2017.1285280
36. Patra JK, Das G, Fraceto LF, et al (2018). Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology, 16 (1):71. doi:10.1186/s12951-018-0392-8
37. Calzoni E, Cesaretti A, Polchi A, et al (2019). Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J Funct Biomater, 10 (1):4. doi:10.3390/jfb10010004
38. Sarkar S, Osama K, Jamal Q, et al (2017). Advances and Implications in Nanotechnology for Lung Cancer Management. Curr Drug Metab, 18:30-38. doi:10.2174/1389200218666161114142646
39. Bourzac K (2016). News Feature: Cancer nanomedicine, reengineered. Proc Natl Acad Sci U S A, 113(45):12600-12603.
40. Wang Z, Duan YY, Duan YY (2018). Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release,290:56-74. doi:10.1016/j.jconrel.2018.10.009
41. Danafar H, Sharafi A, Kheiri Manjili H, Andalib S (2017). Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol, 22 (5):642-651.
42. Zhu Z, Su M (2017). Polydopamine Nanoparticles for Combined Chemo-and Photothermal Cancer Therapy. Nanomaterials (Basel), 7 (7):160.
43. Zhang E, Xiang S, Fu A (2016). Recent Progresses of Fluorescent Gold Nanoclusters in Biomedical Applications. J Nanosci Nanotechnol, 16 (7):6597-6610.
44. Yan S, Huang Q, Chen J, et al (2019). Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int J Nanomedicine,14:6799-6812. doi:10.2147/IJN.S216194
45. Barbuti AM, Chen Z-S (2015). Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel), 7 (4):2360-2371.
46. Cazares-Cortes E, Nerantzaki M, Fresnais J, et al (2018). Magnetic Nanoparticles Create Hot Spots in Polymer Matrix for Controlled Drug Release. Nanomaterials (Basel), 8 (10):850. doi:10.3390/nano8100850
47. Revia RA, Zhang M (2016). Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today, 19 (3):157-168. doi: 10.1016/j.mattod.2015.08.022.
48. Nosrati H, Salehiabar M, Manjili HK, et al (2018). Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol, 108:909-915.
49. Nawshad Hossian AKM, MacKenzie GG, Mattheolabakis G (2019). MiRNAs in gastrointestinal diseases: Can we effectively deliver RNA-based therapeutics orally? Nanomedicine (Lond), 14 (21):2873-2889. doi:10.2217/nnm-2019-0180
50. Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A (2021). Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci, 16 (4):444-58.
51. Zheng S, Wang P, Sun H, et al (2018). Tissue distribution and maternal transfer of persistent organic pollutants in Kentish Plovers (Charadrius alexandrines) from Cangzhou Wetland, Bohai Bay, China. Sci Total Environ, 612:1105-1113. doi:10.1016/J.SCITOTENV.2017.08.323
52. Guillama Barroso G, Narayan M, Alvarado M, et al (2020). Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Challenges and Possibilities. ACS Omega, 5 (22):12583-12595. doi:10.1021/acsomega.0c01592
53. Huang C, Huang S, Li H, et al (2018). The effects of ultrasound exposure on P-glycoprotein-mediated multidrug resistance in vitro and in vivo. J Exp Clin Cancer Res, 37 (1):232. doi:10.1186/s13046-018-0900-6
54. Pourjavadi A, Asgari S, Hosseini SH, et al (2018). Codelivery of Hydrophobic and Hydrophilic Drugs by Graphene-Decorated Magnetic Dendrimers. Langmuir, 34 (50):15304-15318. doi:10.1021/acs.langmuir.8b02710
55. Crucho CIC, Barros MT (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl, 80:771-784. doi:10.1016/J.MSEC.2017.06.004
56. Chakraborty K, Shivakumar A, Ramachandran S (2016). Nano-technology in herbal medicines: A review. Int J Herb Med, 4:21-27. doi:10.22271/flora.2016.v4.i3.05
57. Priya J, Naha A, Dhoot AS, Xalxo N (2018). A review on polymeric nanoparticles: A promising novel drug delivery system. J Glob Pharma Technol, 10 (4):10-17.
58. Jain S, Cherukupalli SK, Mahmood A, et al (2019). Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics. J Appl Pharm Sci, 9 (8):130-143. doi:10.7324/JAPS.2019.90817
59. Tahir N, Madni A, Correia A, et al (2019). Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine, 14:4961-4974. doi:10.2147/IJN.S209325
60. Lin Y-X, Wang Y, Blake S, et al (2020). RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics, 10 (1):281-299. doi:10.7150/thno.35568
61. Jalilzadeh N, Samadi N, Salehi R, et al (2020). Novel nano-vehicle for delivery and efficiency of anticancer auraptene against colon cancer cells. Sci Rep, 10 (1):1606. doi:10.1038/s41598-020-58527-0
62. Chakraborty S, Dhakshinamurthy GS, Misra SK (2017). Tailoring of physicochemical properties of nanocarriers for effective anti‐cancer applications. J Biomed Mater Res A, 105 (10), 2906-2928.
63. Tang H, Zhao W, Yu J, Li Y, Zhao C (2018). Recent development of pH-responsive polymers for cancer nanomedicine. Molecules, 24 (1):4. doi:10.3390/molecules24010004
64. de Almeida Pachioni-Vasconcelos J, Lopes AM, Apolinário AC, et al (2016). Nanostructures for protein drug delivery. Biomater Sci, 4 (2):205-218.
65. Souza MA, Santos HT, Pretti TS, et al (2016). Magnetic nanoparticles surface modified with biodegradable polymers for controled methotrexate delivery in cancer therapy. J Nanopharmaceutics Drug Deliv, 3 (1):77-84.
66. Singh S, Singla Y, Arora S (2015). An outlook of divergent approaches for production of nanoparticulate based drug delivery system. Int J Pharm Sci Res, 6 (7):2689.
67. Peng F, Setyawati MI, Tee JK, et al (2019). Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol, 14 (3):279-286.
68. Vanderburgh J, Hill JL, Gupta MK, et al (2020. Tuning Ligand Density to Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction. ACS Nano, 14 (1): 311–327. https://doi.org/10.1021/acsnano.9b04571
69. Deng Y, Yang F, Cocco E, et al (2016). Improved ip drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci U S A, 113 (41):11453-11458.
70. Jeon H, Kim J, Lee YM, et al (2016). Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J Control Release, 231:68-76.
71. Peng T, Liu K, Gao L, et al (2016). Poly (l-γ-glutamylglutamine) Polymer Enhances Doxorubicin Accumulation in Multidrug Resistant Breast Cancer Cells. Molecules, 21 (6):720. doi:10.3390/molecules21060720
72. Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, et al (2019). Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine,14:3111-3128. doi:10.2147/IJN.S200253
73. Sun H, Yan L, Carter KA, et al (2019). Zwitterionic Cross-Linked Biodegradable Nanocapsules for Cancer Imaging. Langmuir, 35 (5):1440-1449. doi:10.1021/acs.langmuir.8b01633
74. Sotto-Maior BS, Mercuri EGF, Senna PM, et al (2016). Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Comput Methods Biomech Biomed Engin, 19 (7):699-706. doi:10.1080/10255842.2015.1052418
75. Joseph SK, Sabitha M, Nair SC (2020). Stimuli-Responsive Polymeric Nanosystem for Colon Specific Drug Delivery. Adv Pharm Bull, 10 (1):1-12. doi:10.15171/apb.2020.001
76. Raza A, Hayat U, Rasheed T, et al (2019). “smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review. J Mater Res Technol, 8 (1):1497-1509. doi:10.1016/j.jmrt.2018.03.007
77. Mccarthy W (2016). Polymeric Drug Delivery Techniques. Aldrich Mater Sci, (5):2-5.
78. Witharana C, Wanigasekara J (2017). Drug Delivery Systems: A New Frontier in Nano-technology. Int J Med Res Health Sci, 6 (9):11-14.
79. Pieper S, Onafuye H, Mulac D, et al (2019). Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein J Nanotechnol,10:2062-2072.
80. Braunová A, Chytil P, Laga R, et al (2020). Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. J Control Release, 321:718-733. doi: 10.1016/j.jconrel.2020.03.002.
81. Pan J, Rostamizadeh K, Filipczak N, et al (2019). Polymeric co-delivery systems in cancer treatment: An overview on component drugs’ dosage ratio effect. Molecules, 24 (6):1035. doi:10.3390/molecules24061035
82. Wei W, Wang J, Chen X, et al (2018). Psychological contract model for knowledge collaboration in virtual community of practice: An analysis based on the game theory. Appl Math Comput, 329:175-187. doi:10.1016/j.amc.2018.01.053
83. Affram KO, Smith T, Ofori E, et al (2020). Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol, 55:101374. doi:10.1016/j.jddst.2019.101374.
84. Bayón-Cordero L, Alkorta I, Arana L (2019). Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 9(3):474. doi:10.3390/nano9030474
85. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al (2019). Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel), 9 (4):638. doi:10.3390/nano9040638
86. Liu J, Xu H, Tang X, et al (2017). Simple and tunable surface coatings via polydopamine for modulating pharmacokinetics, cell uptake and biodistribution of polymeric nanoparticles. RSC Adv, 7:15864-15876. doi:10.1039/C7RA01354J
87. Yang J, Zhang X, Liu C, et al (2021). Biologically modified nanoparticles as theranostic bionanomaterials. Prog Mater Sci, 118:100768. doi:10.1016/j.pmatsci.2020.100768
Files | ||
Issue | Vol 51 No 2 (2022) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijph.v51i2.8677 | |
Keywords | ||
Cancer therapy Chemotherapy Drug delivery Magnetic nanoparticles Polymeric nanoparticles |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |