Factors Associated with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis
Abstract
Background: The current study aimed to identify effective factors on the death among COVID-19 patients.
Methods: All articles published in the period Jan 1, 2020, to Mar 23, 2020, written in English and reporting factors associated with COVID-19 mortality were reviewed. The random-effects model with 95% CI was used to calculate the pooled Odds Ratio (OR) and Hazard Ratio (HR). Data were analyzed using Stata ver.11.0.
Results: The older age OR: 1.21(1.10-1.33) and male gender OR: 1.41(1.04-1.89) were most prone to death due to COVID-19. The Comorbidity with some chronic diseases such as Diabetes type2 OR: 2.42(1.06-5.52), Hypertension OR: 2.54(1.21-5.32), Kidney disorder OR: 2.61(1.22-5.60), Respiratory disorder 3.09 (1.39-6.88) and Heart diseases OR: 4.37 (1.13-16.90) can increase the risk of COVID19 mortality.
Conclusion: Infection with COVID-19 is associated with substantial mortality mainly in older patients with comorbidities. We found the significant effect of age, gender and comorbidities such as Diabetes Mellitus, Hypertension, Kidney disorders and Heart diseases on the risk of death in patients with COVID-19. The factors associated with mortality found in this research can help to recognize patients with COVID-19 who are at higher risk of a poor prognosis. Monitoring these factors can serve to give early warning for the appropriate interventions.
2. Bonilla-Aldana DK, Dhama K, Rodriguez-Morales AJ(2020). Revisiting the one health approach in the context of COVID-19: a look into the ecology of this emerging disease. Adv Anim Vet Sci, 8(3):234-7.
3. Anderson RM, Heesterbeek H, Klinkenberg D, et al (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228):931-4
4. Guo Y-R, Cao Q-D, Hong Z-S, et al (2020). The origin, transmission and clinical ther-apies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res, 7(1):1-10.
5. Organization WH (2020). Report of the WHO-China Joint Mission on Corona-virus Disease 2019 (COVID-19). Availa-ble from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
6. Stroup DF, Berlin JA, Morton SC, et al (2000). Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA, 283(15):2008-12.
7. Wells G, Shea B, O’Connell D, et al (2014). Newcastle-Ottawa quality assessment scale cohort studies. Ontario, Canada: University of Ottawa. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
8. Wells G, Shea B, O’Connell D, et al (2017). Newcastle–Ottawa quality assessment scale—case control studies. 2017. Availa-ble from: http://www.ohri.ca/programs/clinical_epidemiology/nosgen.pdf
9. Wu F, Zhao S, Yu B, et al (2020). A new coronavirus associated with human res-piratory disease in China. Nature, 579(7798):265-9.
10. Adhikari SP, Meng S, Wu Y-J, et al (2020). Epidemiology, causes, clinical manifesta-tion and diagnosis, prevention and con-trol of coronavirus disease (COVID-19) during the early outbreak period: a scop-ing review. Infect Dis Poverty, 9(1):1-12.
11. worldometers 2020. Available from: https://www.worldometers.info/coronavirus/#countries.
12. Wu C, Chen X, Cai Y, et al (2020).Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA In-tern Med. doi: 10.1001/jamainternmed.2020.0994
13. Hong K-H, Choi J-P, Hong S-H, et al ( 2018). Predictors of mortality in Middle East respiratory syndrome (MERS). Thorax,73(3):286-9.
14. Choi KW, Chau TN, Tsang O, et al (2003). Outcomes and prognostic factors in 267 patients with severe acute respiratory syndrome in Hong Kong. Ann Intern Med, 139(9):715-23.
15. Opal SM, Girard TD, Ely EW (2005). The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis.41(Supplement_7):S504-S12.
16. Novel CPERE (2020).The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi, 41(2):145. [Article in Chinese; Abstract available in Chinese from the publisher]
17. Guan W-j, Ni Z-y, Hu Y, Liang W-h, et al (2020). Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 382(18):1708-20.
18. Jaillon S, Berthenet K, Garlanda C. (2019). Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-017-8648-x
19. Badawi A, Ryoo SG (2016).Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis, 49:129-33.
20. Yang J, Zheng Y, Gou X, et al (2020). Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis, 94:91-5.
21. Carey IM, Critchley JA, DeWilde S, et al (2018). Risk of infection in type 1 and type 2 diabetes compared with the general population: a matched cohort study. Diabetes Care,41(3):513-21.
22. van Crevel R, van de Vijver S, Moore DA (2017). The global diabetes epidemic: what does it mean for infectious diseases in tropical countries? Lancet Diabetes Endocrinol, 5(6):457-68.
23. Shah BR, Hux JE (2003). Quantifying the risk of infectious diseases for people with diabetes. Diabetes care,26(2):510-3.
24. Shi Q, Zhang X, Jiang F, et al (2020). Dia-betic Patients with COVID-19, Charac-teristics and Outcome: A Two Centre, Retrospective, Case Control Study. SSRN Electronic Journal, DOI: 10.2139/ssrn.3551369.
25. Allard R, Leclerc P, Tremblay C et al (2010). Diabetes and the severity of pandemic in-fluenza A (H1N1) infection. Diabetes Care, 33(7):1491-3.
26. Odegaard JI, Chawla A ( 2012).Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med,2(3):a007724.
27. Dooley KE, Chaisson RE.( 2009). Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis.9(12):737-46.
28. Guo L, Wei D, WU Y, et al (2019). Clinical features predicting mortality risk in patients with viral pneumonia: the MuLBSTA score. Front Microbiol,10:2752.
29. Shi Q, Zhao K, Yu J, et al (2020) Clinical characteristics of 101 non-surviving hospitalized patients with COVID-19: A single center, retrospective study. MedRxiv. 2020. doi: 10.1101/2020.03.04.20031039
30. Chu KH, Tsang WK, Tang CS, et al ( 2005). Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int, 67(2):698-705.
31. Zhao X, Zhang B, Li P, et al ( 2020). Incidence, clinical characteristics and prognostic factor of patients with COVID-19: a systematic review and meta-analysis. MedRxiv, doi: 10.1101/2020.03.17.20037572
32. Alraddadi BM, Watson JT, Almarashi A, et al (2014). Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia 2014. Emerg Infect Dis,22(1):49.
33. Agrawal AS, Garron T, Tao X, et al (2015).Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol,89(7):3659-70.
34. Mertz D, Kim TH, Johnstone J, et al (2013). Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ,347:f5061.
35. Lippi G, Henry BM (2020). Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med, 75: 107–108.
36. Wan Y, Shang J, Graham R, et al (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol, 94(7):e00127-20.
37. Oakes JM, Fuchs RM, Gardner JD , et al (2018). Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol, 315(5):R895-R906.
38. Zhang J-j, Dong X, Cao Y-y, et al (2020). Clinical characteristics of 140 patients infected with SARSCoV2 in Wuhan, China. Allergy, doi: 10.1111/all.14238. [Epub ahead of print]
39. Weinkove R, McQuilten ZK, Adler J, et al (2020). Managing haematology and oncology patients during the COVID‐19 pandemic: interim consensus guidance. Med J Australia, doi:https://doi.org/10.5694/mja2.50607
40. Wu Z, McGoogan JM (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA,323(13):1239-42.
41. Liang W, Guan W, Chen R, et al (2020). Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol, 21(3):335-7.
42. Huang C, Wang Y, Li X, et al (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet,395(10223):497-506.
43. Chen N, Zhou M, Dong X, et al (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet,395(10223):507-13.
44. Cao Z, Zhang Q, Lu X, et al (2020). Estimating the effective reproduction number of the 2019-nCoV in China. MedRxiv, doi: 10.1101/2020.01.27.20018952.
45. Zhao S, Lin Q, Ran J, et al ( 2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis, 92:214-7.
46. Cheng Y, Luo R, Wang K, et al (2020). Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int, 97(5):829-838.
47. Chen M, Fan Y, Wu X, et al (2020). Clinical characteristics and risk factors for fatal outcome in patients with 2019-coronavirus infected disease (COVID-19) in Wuhan, China. Available at SSRN: https://ssrn.com/abstract=3546069
48. Yang Y, Shi J, Ge S, et al (2020). Effect of continuous renal replacement therapy on all-cause mortality in COVID-19 patients undergoing invasive mechanical ventila-tion: a retrospective cohort study. MedRxiv, doi: 10.1101/2020.03.16.20036780
49. Deng X, Yang J, Wang W, et al (2020). Case fatality risk of novel coronavirus diseases 2019 in China. medRxiv. doi: MedRxiv, 2020. doi: 10.1101/2020.03.04.20031005
50. Caramelo F, Ferreira N, Oliveiros B. (2020). Estimation of risk factors for COVID-19 mortality-preliminary results. MedRxiv, 2020. doi: 10.1101/2020.02.24.20027268
51. Zhou F, Yu T, Du R, et al (2020).Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395(10229) :1054-62.
52. Yuan M, Yin W, Tao Z, Tan W, et al (2019). Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One,15(3):e0230548.
53. Yang X, Yu Y, Xu J, et al (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 8(5): 475-81.
Files | ||
Issue | Vol 49 No 7 (2020) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijph.v49i7.3574 | |
PMCID | PMC7548487 | |
PMID | 33083287 | |
Keywords | ||
Coronavirus disease 2019; SARS-CoV-2; COVID-19; Mortality; Comorbidities |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |