LncRNA HOTAIR Promotes Proliferation of Malignant Melanoma Cells Through NF-κB Pathway

  • Jun WANG Mail Department of Burn and Skin Repair Surgery, Hainan General Hospital, Haikou, China AND Department of Burn and Skin Repair Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
  • Jingxin CHEN Department of Oraland Maxillofacial Surgery, Hainan General Hospital, Haikou, China AND Department of Oraland Maxillofacial Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
  • Gang JING Department of Burn and Skin Repair Surgery, Hainan General Hospital, Haikou, China AND Department of Burn and Skin Repair Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
  • Daoquan DONG Department of Burn and Skin Repair Surgery, Hainan General Hospital, Haikou, China AND Department of Burn and Skin Repair Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
Keywords:
lncRNA HOTAIR, Malignant melanoma cells, NF-κB pathway

Abstract

Background: To study the effects of long non-coding ribonucleic acid (lncRNA) HOX transcript antisense intergenic RNA (HOTAIR) on the proliferation and apoptosis of malignant melanoma cells, and to explore its specific regulatory mechanism through the nuclear factor-κB (NF-κB) signaling pathway.

Methods: LncRNA HOTAIR small-interfering RNAs (siRNAs) were designed and synthesized, and the effects of si-HOTAIR transfection on the proliferation and apoptosis of malignant melanoma cells were detected via cell counting kit-8 (CCK-8) assay, 4',6-diamidino-2-phenylindole (DAPI) staining assay and flow cytometry, respectively. The gene expressions were determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the changes in NF-κB pathway-related proteins and apoptosis-associated proteins after interference in lncRNA HOTAIR were detected via Western blotting, and the level of NF-κB in each group was determined via ELISA.

Results: The results of CCK-8 assay revealed that the cell proliferation rate significantly declined gradually in si-HOTAIR group compared with that in si-NC group and control group (P<0.05). The results of Western blotting and ELISA showed that the activity of NF-κB in si-HOTAIR group was weakened (P<0.05), suggesting that down-regulation of HOTAIR can suppress the activity of NF-κB. Compared with si-NC group and control group, si-HOTAIR group had remarkably increased gene and protein expressions of pro-apoptotic Bax, and remarkably decreased gene and protein expressions of anti-apoptotic Bcl-2 (P<0.05), demonstrating that down-regulation of HOTAIR can promote apoptosis.

Conclusion: Down-regulation of lncRNA HOTAIR can inhibit the proliferation and promote the apoptosis of malignant melanoma cells and suppress the NF-κB pathway.

References

1. Luo C, Shen J (2017). Research progress in advanced melanoma. Cancer Lett, 397: 120-126.
2. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF (2005). Meta-analysis of risk factors for cutane-ous melanoma: II. Sun exposure. Eur J Cancer, 41: 45-60.
3. Reed KB, Brewer JD, Lohse CM, Bringe KE, Pruitt CN, Gibson LE (2012). In-creasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin Proc, 87: 328-334.
4. Miller KD, Siegel RL, Lin CC, et al (2016). Cancer treatment and survivorship statis-tics, 2016. CA Cancer J Clin, 66: 271-289.
5. Mercer TR, Dinger ME, Mattick JS (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet, 10: 155-159.
6. Yao Y, Li J, Wang L (2014). Large interven-ing non-coding RNA HOTAIR is an in-dicator of poor prognosis and a thera-peutic target in human cancers. Int J Mol Sci, 15: 18985-18999.
7. Zhang J, Liu X, You LH, Zhou RZ (2016). Significant association between long non-coding RNA HOTAIR polymorphisms and cancer susceptibility: a meta-analysis. Onco Targets Ther, 9: 3335-3343.
8. Carrion K, Dyo J, Patel V, Sasik R, Mo-hamed SA, Hardiman G, Nigam V (2014). The long non-coding HOTAIR is modulated by cyclic stretch and WNT/beta-CATENIN in human aortic valve cells and is a novel repressor of cal-cification genes. PLoS One, 9: e96577.
9. Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ (2015). PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med, 15: 121-126.
10. Mao X, Su Z, Mookhtiar AK (2017). Long non-coding RNA: a versatile regulator of the nuclear factor-kappaB signalling cir-cuit. Immunology, 150: 379-388.
11. Gupta RA, Shah N, Wang KC, et al (2010). Long non-coding RNA HOTAIR repro-grams chromatin state to promote cancer metastasis. Nature, 464: 1071-1076.
12. Wang X, Liu W, Wang P, Li S (2018). RNA interference of long noncoding RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to cisplatin in oral squamous cell carcinoma. J Oral Pathol Med, 47: 930-937.
13. Kogo R, Shimamura T, Mimori K, et al (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res, 71: 6320-6326.
14. Li J, Wang J, Zhong Y, Guo R, Chu D, Qiu H, Yuan Z (2017). HOTAIR: a key regu-lator in gynecologic cancers. Cancer Cell Int, 17: 65.
15. Cantile M, Cindolo L, Napodano G, Altieri V, Cillo C (2003). Hyperexpression of lo-cus C genes in the HOX network is strongly associated in vivo with human bladder transitional cell carcinomas. Onco-gene, 22: 6462-6468.
16. Cantile M, Scognamiglio G, Anniciello A, et al (2012). Increased HOX C13 expres-sion in metastatic melanoma progression. J Transl Med, 10: 91.
17. Panday A, Inda ME, Bagam P, Sahoo MK, Osorio D, Batra S (2016). Transcription Factor NF-kappaB: An Update on Inter-vention Strategies. Arch Immunol Ther Exp (Warsz), 64: 463-483.
18. Mobley AK, Braeuer RR, Kamiya T, Sho-shan E, Bar-Eli M (2012). Driving tran-scriptional regulators in melanoma metas-tasis. Cancer Metastasis Rev, 31: 621-632.
19. Liu QH, Ma LS (2018). Knockdown of thrombospondin 2 inhibits metastasis through modulation of PI3K signaling pathway in uveal melanoma cell line M23. Eur Rev Med Pharmacol Sci, 22: 6230-6238.
20. Chen WK, Yu XH, Yang W, Wang C, He WS, Yan YG, Zhang J, Wang WJ (2017). lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif, 50: e12313.
21. Yang L, Zhang X, Li H, Liu J (2016). The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol Biosyst, 12: 2605-2612.
22. Wu Y, Zhang L, Zhang L, et al (2015). Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by re-cruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J On-col, 46: 2586-2594.
23. Luan W, Li R, Liu L, et al (2017). Long non-coding RNA HOTAIR acts as a compet-ing endogenous RNA to promote malig-nant melanoma progression by sponging miR-152-3p. Oncotarget, 8: 85401-85414.
24. Barham W, Chen L, Tikhomirov O, Onish-ko H, Gleaves L, Stricker TP, Blackwell TS, Yull FE (2015). Aberrant activation of NF-kappaB signaling in mammary epi-thelium leads to abnormal growth and ductal carcinoma in situ. BMC Cancer, 15: 647.
25. Weng H, Deng Y, Xie Y, Liu H, Gong F (2013). Expression and significance of HMGB1, TLR4 and NF-kappaB p65 in human epidermal tumors. BMC Cancer, 13: 311.
Published
2020-09-29
How to Cite
1.
WANG J, CHEN J, JING G, DONG D. LncRNA HOTAIR Promotes Proliferation of Malignant Melanoma Cells Through NF-κB Pathway. Iran J Public Health. 49(10):1931-1939.
Section
Original Article(s)