Original Article

Preparation of Photocatalytic TiO2–Polyacrylonitrile Nanofibers for Filtration of Airborne Microorganisms

Abstract

Background: We aimed to investigate the efficiency of neat polyacrylonitrile (PAN) nanofibers and photocatalytic PAN/TiO2 nanofibers for removal of airborne microorganisms.

Methods: Nanofibers were fabricated from 16 wt% of PAN dissolved in dimethyl formamide through the electrospinning technique. The efficiency of media for removal of Staphylococcus epidermidis and Bacillus subtilis was investigated at different conditions such as face velocity, relative humidity, air temperature and UVC radiation intensity. as face velocity (0.1 and 0.3 m/s), relative humidity (35±5% and 60±5%), air temperature (22±3 °C and 30±3 °C) and the UVC radiation intensity (dark, 1±0.09 mW/cm2 and 1.8±0.07 mW/cm2) using air sampling from upstream and downstream of media by cascade impactor containing blood agar culture medium.

Results: The mean diameter of electrospun fibers and coefficient of variation were 194 nm and 15%, respectively. The amount of immobilized TiO2 on the filter was 620±6.56 mg/m2. Photocatalytic nanofiber filter media presented the best performance for removal of airborne B. subtilis at 60±5% relative humidity, 0.1 m/s face velocity, air temperature 22 °C, and 1.8 ± 0.07 mW/cm2 UVC radiation.

Conclusion: The filtration efficiency of photocatalytic media was significantly higher than neat ones. Lower efficiency of media was found in the higher air velocity for all bioaerosols. High UVC radiation intensity increased filtration efficiency. Moreover, the increase in air temperature and relative humidity (except for TiO2-coated media under UVC radiation) did not significantly affect the filtration efficiency of all media.

1. World Health Organization (2002). "The world health report 2002 - Reducing Risks, Promoting Healthy Life. Geneva, Switzerland: WHO. Available from: https://www.who.int/whr/2002/en/whr02_en.pdf?ua=1
2. Pal A, Min X, Liya EY, et al (2005). Photocatalytic inactivation of bioaerosols by TiO2 coated membrane. Int J Chem React Eng, 3(1). Published Online: 2005-10-27.
3. Gligorovski S, Abbatt JP (2018). An indoor chemical cocktail. Science, 359(6376):632-633.
4. Du Y, Wang Y, Du Z, et al (2018). Modeling of residential indoor PM2. 5 exposure in 37 counties in China. En-viron Pollut, 238:691-697.
5. Stockwell RE, Ballard EL, O'Rourke P, et al (2019). Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. J Hosp Infect, 103(2):175-184.
6. Vohra A, Goswami D, Deshpande D, et al (2005). Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J Ind Microbiol Biotechnol, 32(8):364-70.
7. Bush LM, Perez MT (2012). The anthrax attacks 10 years later. Ann Intern Med, 156(1_Part_1):41-44.
8. Farhang Dehghan S, Golbabaei F, Maddah B, et al (2016). Fabrication and Optimization of Electrospun Polyacrylonitrile Nanofiber for Application in Air Filtration. Iran Occupational Health, 13(5):11-23.
9. Mohraz M, Golbabaei F, Yu I, et al (2019). Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications.
Int J Environ Sci Technol, 16(2):681-694.
10. Pham T-D, Lee B-K (2015). Disinfection of Staphylococcus aureus in indoor aerosols using Cu–TiO2 deposited on glass fiber under visible light irradiation.
J Photochem Photobiol A Chem, 307:16-22.
11. Faccini M, Borja G, Boerrigter M, et al (2015). Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater, 2015:2.
12. Rogina A (2014). Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci, 296:221-230.
13. Huang Z-M, Zhang Y-Z, Kotaki M, et al (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol, 63(15):2223-2253.
14. Zhu M, Han J, Wang F, et al (2017). Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng, 302(1):1600353.
15. Zhang Q, Welch J, Park H, et al (2010). Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci, 41(2):230-236.
16. Farhang Dehghan S, Maddah B, Golbabaei F (2016). The Development of Nanofibrous Media Filter Containing Nanoparticles for Removing Particles from Air Stream. IJHE, 8(4):509-524.
17. Huang T-M, Pang F, Hsieh I-F, et al (2016). Control of radial structural gradient in PAN/silver nanofibers using solvent vapor treatment. Synth Met, 221:309-318.
18. Dehghan S, Golbabaei F, Maddah B, et al (2016). Optimization of Electrospinning Parameters for PAN-MgO Nanofibers Applied in Air Filtration. J Air Waste Manage Assoc, 66(9):912-921.
19. Przekop R, Gradoń L (2008). Deposition and filtration of nanoparticles in the composites of nano-and microsized fibers. Aerosol Sci Technol, 42(6):483-493.
20. Bonetta S, Bonetta S, Motta F, et al (2013). Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express, 3(1):59.
21. Gupta SM, Tripathi M (2011). A review of TiO 2 nanoparticles. Chin Sci Bull, 56(16):1639.
22. Mo J, Zhang Y, Xu Q, et al (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ, 43(14):2229-2246.
23. Hashimoto K, Irie H, Fujishima A (2005). TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys, 44(12R):8269.
24. Pant HR, Pandeya DR, Nam KT, et al (2011). Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater, 189(1-2):465-471.
25. Pourhassan B, Golbabaei F, Pourmand MR, et al (2018). Examining performance of the conventional and photocatalytic HEPA filters on removal of the airborne microorganisms. J Health Saf Work, 8(3):251-264.
26. Dehghan S, Golbabaei F, Mousavi T, et al (2020). Production of nanofibers containing magnesium oxide nanoparticles for removing bioaerosol. Pollution, 6(1): 185-196.
27. Mousavi T, Golbabaei F, Pourmand MR, et al (2017). Evaluating the efficiency of UVC radiation on HEPA filters to remove airborne microorganisms. J Health Saf Work,7(2):111-120.
28. Chuaybamroong P, Chotigawin R, Supothina S, et al (2010). Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air, 20(3):246-254.
29. Dunlop PS, McMurray TA, Hamilton JW, et al (2008). Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. J Photochem Photobiol A Chem, 196(1):113-119.
30. Thunyasirinon C, Sribenjalux P, Supothina S, et al (2015). Enhancement of air filter with TiO2 photocatalysis for mycobacterium tuberculosis removal. Aerosol Air Qual Res, 15:600-610.
31. Pigeot-Remy S, Lazzaroni J, Simonet F, et al (2014). Survival of bioaerosols in HVAC system photocatalytic filters. Appl Catal B, 144:654-664.
32. Pal A, Pehkonen SO, Yu LE, et al (2008). Photocatalytic inactivation of airborne bacteria in a continuous-flow reactor. Ind Eng Chem Res, 47(20):7580-7585.
33. Li F, Li X, Ao C, et al (2005). Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification. Chemosphere, 59(6):787-800.
34. Goswami T, Hingorani S, Greist H, et al (1999). Photocatalytic System to De-contaminate Indoor Air. J Adv Oxid Technol, 4(2):185-188.
Files
IssueVol 51 No 4 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijph.v51i4.9248
Keywords
Nanofiber Electrospinning Air Filtration Airborne microorganism Photocatalytic

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Pourhassan B, Golbabaei F, Farhang Dehghan S, Pourmand MR, Mousavi T, Masoorian E. Preparation of Photocatalytic TiO2–Polyacrylonitrile Nanofibers for Filtration of Airborne Microorganisms. Iran J Public Health. 2022;51(4):871-879.