Twitter Research Synthesis for Health Promotion: A Bibliometric Analysis
Abstract
Background: This study enriched our understanding by systematically reviewing knowledge management twitter health (KMTH) articles extracted from Web of Science (WoS) using cartography analysis through VOSviewer–for the last 11 years.
Methods: A total of 798 KMTH articles were found from 2009 to 2019, analyzed based on the most co-occurrence keywords of KMTH articles.
Results: Three clusters emerged through cartography analysis; Cluster 1: Twitter as health education and health promotion platform; Cluster 2: Twitter as public health promotion platform and Cluster 3: Twitter as health sentiment platform through big data and machine learning.
Conclusion: This study opened new avenues for all health care providers to utilize Twitter as a KM platform to promote health care. This is the first bibliometric analysis of KMTH publications according to our best knowledge.
2. Harris JK (2013). The Network of Web 2.0 Connections Among State Health Departments. J Public Heal Manag Pract, 19(3): E20–24.
3. Gilbert S (2016). Learning in a Twitter-based community of practice: an exploration of knowledge exchange as a motivation for participation in #hcsmca. Inf Commun Soc, 19(9, SI): 1214–32.
4. Xu WW, Chiu IH, Chen Y, et al (2015). Twitter hashtags for health: Applying network and content analyses to understand the health knowledge sharing in a Twitter-based community of practice. Qual Quant, 49(4): 1361–80.
5. Sugawara Y, Narimatsu H, Hozawa A, et al (2012). Cancer patients on Twitter: a novel patient community on social media. BMC Res Notes, 5(1): 699.
6. Choo EK, Ranney ML, Chan TM, et al (2015). Twitter as a tool for communication and knowledge exchange in academic medicine: A guide for skeptics and novices. Med Teach, 37(5): 411–16.
7. Hawn C (2009). Take Two Aspirin And Tweet Me In The Morning: How Twitter, Facebook, And Other Social Media Are Reshaping Health Care. Health Aff, 28(2): 361–68.
8. Chung AE, Skinner AC, Hasty SE, et al (2017). Tweeting to Health: A Novel mHealth Intervention Using Fitbits and Twitter to Foster Healthy Lifestyles. Clin Pediatr (Phila), 56(1): 26–32.
9. Laranjo L, Arguel A, Neves AL, et al (2015). The influence of social networking sites on health behavior change: a systematic review and meta-analysis. J Am Med Informatics Assoc, 22(1): 243–56.
10. Terry M (2009). Twittering Healthcare: Social Media and Medicine. Telemed e-Health, 15(6): 507–10.
11. Vance K, Howe W, Dellavalle RP (2009). Internet Sites as a Source of Public Health Information. Dermatol Clin, 27(2): 133–36.
12. Bahkali S, Almaiman A, Altassan N, et al (2015). Exploring the Role of Twitter in Promoting Women’s Health in the Arab World: Lessons Learned. In: Stud Health Technol Inform,213: 251–54.
13. Wang Y, Weber I, Mitra P (2016). Quantified Self Meets Social Media: Sharing of Weight Updates on Twitter. In: DH’16: Proceedings of the 2016 Digital Health Conference, 93–97.
14. Chen T, Dredze M (2018). Vaccine Images on Twitter: Analysis of What Images are Shared. J Med Internet Res, 20(4):1–18.
15. Mills DJ, Kohl SE (2016). Twitter for travel medicine providers. J Travel Med, 23(3); 1-6.
16. Wang W, Chen L, Thirunarayan K, et al (2012). Harnessing twitter “big data” for automatic emotion identification. In: Proceedings - 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust, 587–92.
17. Lagos-ortiz K (2017). Technologies and Innovation. Springer International Publishing, 749: 63–76.
18. Okazaki S, Díaz-Martín AM, Rozano M, et al (2015). Using twitter to engage with customers: A data mining approach. Internet Res, 25(3): 416–34.
19. Chen X, Wang S, Tang Y, et al (2019). A bibliometric analysis of event detection in social media. Online Inf Rev, 43(1): 29–52.
20. Keramatfar A, Amirkhani H (2019). Bibliometrics of sentiment analysis literature. J Inf Sci, 45(1):3–15.
21. Noor S, Guo Y, Shah SHH, et al (2020). Bibliometric Analysis of Social Media as a Platform for Knowledge Management. Int J Knowl Manag,16(3); 33-51.
22. Muller AM, Maher CA, Vandelanotte C, et al (2018). Physical Activity, Sedentary Behavior, and Diet-Related eHealth and mHealth Research: Bibliometric Analysis. J Med Internet Res,20(4); 1-18.
23. Li F, Li M, Guan P, et al (2015). Mapping Publication Trends and Identifying Hot Spots of Research on Internet Health Information Seeking Behavior: A Quantitative and Co-Word Biclustering Analysis. J Med Internet Res, 17(3); e81.
24. Sinnenberg L, Buttenheim AM, Padrez K, et al (2017). Twitter as a Tool for Health Research: A Systematic Review. Am J Public Health, 107(1): E1–8.
25. Shah SHH, Lei S, Ali M, et al (2019). Prosumption: bibliometric analysis using HistCite and VOSviewer. Kybernetes, 49(3):1–24.
26. Shah SHH, Lei S, Noor S, et al (2020). Research Synthesis and New Directions of Prosumption: A bibliometric analysis. Int J Inf Manag Sci, 31(1):79–98.
27. Noor S, Guo Y, Shah SHH, et al (2020). Research Synthesis and Thematic Analysis of Twitter Through Bibliometric Analysis. Int J Semant Web Inf Syst, 16(3):88–109.
28. Fellnhofer K (2019). Toward a Taxonomy of Entrepreneurship Education Research Literature: A Bibliometric Mapping and Visualization. Educ Res Rev, 27:28–55.
29. Jimoh LF, Eshiemokhai E, Hambali ZS (2014). Bibliometric Analysis of International Journal of Research in Education , 2004 – 2012. Information and Knowledge Management, 4(12):42–49.
30. Vošner HB, Kokol P, Bobek S, et al (2016). A bibliometric retrospective of the Journal Computers in Human Behavior (1991–2015). Comput Human Behav, 65:46–58.
31. Coronado RA, Wurtzel WA, Simon CB, et al (2011). Content and Bibliometric Analysis of Articles Published in the Journal of Orthopaedic & Sports Physical Therapy. J Orthop Sport Phys Ther, 41(12): 920–31.
32. Ullah M, Butt IF, Haroon M (2008). The Journal of Ayub Medical College: A 10-year bibliometric study. Health Info Libr J, 25(2):116–24.
33. Moura LKB, de Mesquita RF, Mobin M, et al (2017). Uses of bibliometric techniques in public health research. Iran J Public Health, 46(10):1435–36.
34. Hole OP, Winther FO, Cederkvist HR, et al (2013). A bibliometric analysis of the clinical development of drugs in Norway for the year 2000. Health Info Libr J, 30(2):149–54.
35. Urquhart C, Dunn S (2013). A bibliometric approach demonstrates the impact of a social care data set on research and policy. Health Info Libr J, 30(4):294–302.
36. Moura LKB, Mobin M, Matos FTC, et al (2017). Bibliometric analysis on the risks of oral cancer for people living with HIV/AIDS. Iran J Public Health, 46(11):1583–85.
37. Ahmed A, Adam M, Ghafar NA, et al (2016). Impact of article page count and number of authors on citations in disability related fields: A systematic review article. Iran J Public Health, 45(9):1118–25.
38. Asghar I, Cang S, Yu H (2017). Assistive technology for people with dementia: an overview and bibliometric study. Health Info Libr J, 34(1):5–19.
39. Fetscherin M, Heinrich D (2015). Consumer brand relationships research: A bibliometric citation meta-analysis. J Bus Res, 68(2):380–90.
40. Gan C, Wang W. A (2014). Bibliometric Analysis of Social Media Research from the Perspective of Library and Information Science. In: Digital Services and Information Intelligence, 445: 23–32.
41. LaMonica HM, English A, Hickie IB, et al (2017). Examining Internet and eHealth Practices and Preferences: Survey Study of Australian Older Adults With Subjective Memory Complaints, Mild Cognitive Impairment, or Dementia. J Med Internet Res, 19(10); e358.
42. Pan X, Yan E, Cui M, et al (2018). Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J Informetr, 12(2):481–93.
43. Samad-Soltani T, Rezaei-Hachesu P, Ghazisaeedi M (2017). Pervasive Decision Support Systems in Healthcare Using Intelligent Robots in Social Media. Iran J Public Health, 46(1 SE-Letter to the Editor).
44. Scanfeld D, Scanfeld V, Larson EL (2010). Dissemination of health information through social networks: Twitter and antibiotics. Am J Infect Control, 38(3):182–88.
45. Eysenbach G (2009). Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet. J Med Internet Res, 11(1); e11.
46. Benetoli A, Chen TF, Aslani P (2015). The use of social media in pharmacy practice and education. Res Soc Adm Pharm, 11(1):1–46.
47. Goldstein K, Briggs M, Oleynik V, et al (2013). Using Digital Media to Promote Kidney Disease Education. Adv Chronic Kidney Dis, 20(4):364–69.
48. Richardson J, Grose J, Nelmes P, et al (2016). Tweet if you want to be sustainable: a thematic analysis of a Twitter chat to discuss sustainability in nurse education. J Adv Nurs, 72(5):1086–96.
49. Price AM, Devis K, LeMoine G, et al (2018). First year nursing students use of social media within education: Results of a survey. Nurse Educ Today, 61:70–76.
50. Allem J-P, Escobedo P, Chu K-H, et al (2017). Campaigns and counter campaigns: reactions on Twitter to e-cigarette education. Tob Control, 26(2):226–29.
51. Strasburger VC, Brown SS (2014). Sex Education in the 21st Century Editorial Comment. Obstet Gynecol Surv, 69(11):663–64.
52. Park H, Reber BH, Chon M-G (2016). Tweeting as Health Communication: Health Organizations’ Use of Twitter for Health Promotion and Public Engagement. J Health Commun, 21(2):188–98.
53. Fisher J, Clayton M (2012). Who Gives a Tweet: Assessing Patients’ Interest in the Use of Social Media for Health Care. Worldviews Evidence-Based Nurs, 9(2):100–08.
54. Rolls K, Hansen M, Jackson D, et al (2016). How Health Care Professionals Use Social Media to Create Virtual Communities: An Integrative Review. J Med Internet Res, 18(6): e166.
55. Diddi P, Lundy LK (2017). Organizational Twitter Use: Content Analysis of Tweets during Breast Cancer Awareness Month. J Health Commun, 22(3):243–53.
56. Glowacki EM, Lazard AJ, Wilcox GB (2017). E-Cigarette Topics Shared by Medical Professionals: A Comparison of Tweets from the United States and United Kingdom. Cyberpsychology Behav Soc Netw, 20(2):133–37.
57. Bosley JC, Zhao NW, Hill S, et al (2013). Decoding twitter: Surveillance and trends for cardiac arrest and resuscitation communication. Resuscitation, 84(2):206–12.
58. Gruebner O, Lowe SR, Sykora M, et al (2017). A novel surveillance approach for disaster mental health. PLoS One, 12(7).
59. Su XY, Suominen H, Hanlen L (2011).Machine Intelligence for Health Information: Capturing Concepts and Trends in Social Media via Query Expansion. In: Health Informatics: The Transformative Power of Innovation p. 150–57.
60. Hansen ND, Molbak K, Cox IJ, et al (2018). Predicting Antimicrobial Drug Consumption using Web Search Data. In: DH `18: Proceedings of the 2018 International Conference on Digital Health, 133–42.
61. Allen C, Tsou M-H, Aslam A, et al (2016). Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza. PLoS One, 11(7).
62. Widener MJ, Li W (2014). Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Appl Geogr, 54(SI):189–97.
63. Murthy D, Gross A, Oliveira D (2011). Understanding Cancer-based Networks in Twitter using Social Network Analysis. In: Fifth IEEE International Conference on Semantic Computing (ICSC 2011), 559–66.
64. Luna-Aveiga H, Medina-Moreira J, Lagos-Ortiz K, et al (2018). Sentiment Polarity Detection in Social Networks: An Approach for Asthma Disease Management. In: Advanced Computational Methods for Knowledge Engineering, (ICCSAMA 2017), 141–52.
Files | ||
Issue | Vol 50 No 11 (2021) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijph.v50i11.7584 | |
Keywords | ||
Twitter Bibliometric analysis Health promotion Knowledge management |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |