Evaluation of (GTG) 5-PCR for Genotyping of Klebsiella pneumonia Strains Isolated from Patients with Urinary Tract Infections

  • Reza RANJBAR Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Davoud AFSHAR Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
Klebsiella pneumoniae, Molecular typing, (GTG) 5-PCR assay


Background: Klebsiella pneumonia is one of the common causes of pneumonia and bacteremia in intensive care patients. The present study was aimed to determine the capability of (GTG) 5-PCR assay for molecular typing of K. pneumonia strains isolated from patients with urinary tract infections.
Methods: In this descriptive-sectional study, K. pneumoniae strains were collected from hospitalized patients with urinary tract infection in Baqiyatallah Hospital, Tehran, Iran during 2017-2018. Isolates were identified by conventional microbiological tests. Bacterial DNA was extracted using boiling method and (GTG) 5-PCR assay was used for subtyping of the isolates. For clustering of isolates, dendrogram was generated according to the unweighted pair group method with arithmetic (UPGMA).
Results: Overall, 88 K. pneumoniae isolates were isolated and subjected to the molecular typing study. The (GTG) 5–PCR assay was able to differentiate the K. pneumoniae strains into 9 clusters including G1-G9. Genotype clusters G4 and G9 consist of highest (26) and lowest (1) number isolate, respectively.
Conclusion: The K. pneumonia strains isolated under the study belonged to various clones and the (GTG) 5-PCR assay as simple and rapid method can be a powerful tool for molecular typing of K. pneumoniae strains.


1. Mancini S, Poirel L, Corthesy M et al (2018). Klebsiella pneumoniae co-producing KPC and RmtG, finally targeting Switzerland. Diagn Microbiol Infect Dis,90(2):151-2.
2. Shakib P, Ghafourian S, Zolfaghary MR et al (2012). Prevalence of OmpK35 and OmpK36 porin expression in beta-lactamase and non-betalactamase-producing Klebsiella pneumoniae. Biologics,6:1-4.
3. Munoz-Price LS, Poirel L, Bonomo RA et al (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis,13(9):785-96.
4. GhafourianS, bin Sekawi Z, Sadeghifard N et al (2011). The prevalence of ESBLs producing Klebsiella pneumoniae isolates in some major hospitals, Iran. Open Microbiol J,5:91-5.
5. Ranjbar R, Memariani H, Sorouri R et al (2016). Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CA-UTI). Microb Pathog,100:244-49.
6. Patel G, Huprikar S, Factor SH et al (2008). Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol,29(12):1099-106.
7. Ranjbar R, Izadi M, Hafshejani TT et al (2016). Molecular detection and antimicrobial resistance of Klebsiella pneumoniae from house flies (Musca domestica) in kitchens, farms, hospitals and slaughterhouses. J Infect Public Health,9(4):499-505.
8. Coque TM, Oliver A, Pérez-Díaz JC et al (2002). Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum β-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000). Antimicrob Agents Chemother,46(2):500-10.
9. Lee GC, Burgess DS (2012). Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob,11(1):32.
10. Aktaş Z, Kayacan ÇB, Schneider I et al (2008). Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy,54(2):101-6.
11. Zhang S, Yang G, Ye Q et al (2018). Phenotypic and Genotypic Characterization of Klebsiella pneumoniae Isolated From Retail Foods in China. Front Microbiol,9:289.
12. Yıldırım İH, Yıldırım SC, Koçak N (2011). Molecular methods for bacterial genotyping and analyzed gene regions. J Microbiol Infect Dis,1(1):42-6.
13. Sultana S, Islam MN, Hoque ME (2018). DNA fingerprinting and molecular diversity analysis for the improvement of brinjal (Solanum melongena L.) cultivars. J Adv Biotechnol Exp Ther, 1(1): 1-6.
14. Ryberg A, Olsson C, Ahrné S et al (2011). Comparison of (GTG) 5-oligonucleotide and ribosomal intergenic transcribed spacer (ITS)-PCR for molecular typing of Klebsiella isolates. J Microbiol Methods,84(2):183-8.
15. Hassanzadeh S, Pourmand MR, Afshar D et al (2016). TENT: A Rapid DNA Extraction Method of Staphylococcus aureus. Iran J Public Health,45(8):1093-95.
16. Sechi LA, Zanetti S, Dupré I et al (1998). Enterobacterial repetitive intergenic consensus sequences as molecular targets for typing of Mycobacterium tuberculosis strains. J Clin Microbiol,36(1):128-32.
17. Švec P, Pantůček R, Petráš P et al (2010). Identification of Staphylococcus spp. using (GTG) 5-PCR fingerprinting. Syst Appl Microbiol,33(8):451-56.
18. De Vuyst L, Camu N, De Winter T et al (2008). Validation of the (GTG) 5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol,125(1):79-90.
19. Mohapatra BR, Broersma K, Mazumder A (2008). Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG) 5-PCR genomic fingerprinting. Int J Med Microbiol,298(3-4):245-52.
20. Versalovic J, Schneider M, De Bruijn F et al (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol,5(1):25-40.
21. Gevers D, Huys G, Swings J (2001). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett,205(1):31-6.
22. Švec P, Nováková D, Žáčková L et al (2008). Evaluation of (GTG) 5-PCR for rapid identification of Streptococcus mutans. Antonie van Leeuwenhoek,94(4):573-79.
23. Papalexandratou Z, Cleenwerck I, De Vos P et al (2009). (GTG) 5-PCR reference framework for acetic acid bacteria. FEMS Microbiol Lett,301(1):44-9.
24. Rasschaert G, Houf K, Imberechts H et al (2005). Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates. J Clin Microbiol,43(8):3615-23.
25. Braem G, De Vliegher S, Supré K et al (2011). (GTG) 5-PCR fingerprinting for the classification and identification of coagulase-negative Staphylococcus species from bovine milk and teat apices: A comparison of type strains and field isolates. Vet Microbiol,147(1-2):67-74.
How to Cite
RANJBAR R, AFSHAR D. Evaluation of (GTG) 5-PCR for Genotyping of Klebsiella pneumonia Strains Isolated from Patients with Urinary Tract Infections. Iran J Public Health. 48(10):1879-1884.
Original Article(s)