Letter to the Editor

An Artificial Neural Network Approach to Predicting Stroke in Postmenopausal Women

Abstract

No Abstract

1. Bushnell CD, Hurn P, Colton C, et al (2006). Advancing the study of stroke in women: summary and recommendations for fu-ture research from an NINDS-sponsored multidisciplinary working group. Stroke, 37(9): 2387-99.
2. Atsma F, Bartelink ML, Grobbee DE, van der Schouw YT (2006). Postmenopausal status and early menopause as independ-ent risk factors for cardiovascular disease: a meta-analysis. Menopause, 13(2): 265-79.
3. Korean Statistical Information Service (2018). State of major illnesses and symptoms by province, grade, qualification, 2017. Na-tional Statistical Office, Republic of Korea. www.koisis.kr
4. Hu FB, Grodstein F, Hennekens CH, Col-ditz GA, Johnson M, Manson JE, Ros-ner B, Stampfer MJ (1999). Age at natural menopause and risk of cardiovascular disease. Arch Intern Med, 159(10): 1061-6.
5. National Stroke Association (2019). Women and stroke. American Heart Association, USA. www.stroke.org
6. LeCun Y, Bengio Y, Hinton G (2015). Deep learning. Nature, 521(7553): 436-44.
7. Li H, Luo M, Zheng J, Luo J, Zeng R, Feng N, Du Q, Fang J (2017). An artificial neu-ral network prediction model of congeni-tal heart disease based on risk factors: A hospital-based case-control study. Medicine, 96(6): e6090.
8. Huang SQ, Xu YH, Yue L, Wei S, Liu L, Gan X, Zhou S, Nie S (2010). Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area. Hypertens Res, 33(7): 722-6.
9. Hsieh MH, Sun LM, Lin CL, Hsieh MJ, Hsu CY, Kao CH (2018). Development of a prediction model for pancreatic cancer in patients with type 2 diabetes using logistic regression and artificial neural network models. Cancer Manag Res, 10: 6317-24.
10. Rasmy L, Wu Y, Wang N, et al (2018). A study of generalizability of recurrent neu-ral network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J Biomed In-form, 84: 11-16.
Files
IssueVol 51 No 4 (2022) QRcode
SectionLetter to the Editor
DOI https://doi.org/10.18502/ijph.v51i4.9261

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Park H, Kim K. An Artificial Neural Network Approach to Predicting Stroke in Postmenopausal Women. Iran J Public Health. 2022;51(4):964-966.