Comparison of Snail1, ZEB1, E-Cadherin Expression Levels in HPV-Induced Cervical Cancer

  • Mahdieh FARZANEHPOUR 1. Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2. Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Ebrahim FAGHIHLOO Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Vahid SALIMI Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Somayeh JALILVAND Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Setareh AKHAVAN Department of Gynecology Oncology, Imam Khomeini Hospital Complex, Valiasr Hospital, Tehran University of Medical Scienc-es, Tehran, Iran
  • Ahad MUHAMMADNEJAD Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
  • Amir Nader EMAMI RAZAVI Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
  • Ehsan KAKAVANDI Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Talat MOKHTARI AZAD Mail Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Keywords:
Cervical cancer, Human papillomavirus, E-cadherin, Snail1

Abstract

Background: Molecular profiling techniques are the rapid detection of biomarkers in the human papillomavirus (HPV) infected cells. We aimed to measure the expression level of three cell factors including Snail1, ZEB-1, and E-cadherin in cervical cancer (CC), precancerous and healthy samples, simultaneously, to find potential biomarkers.

Methods: The expression level of the mentioned cell factors were investigated in 72 CC patients, precancerous patients, and healthy controls by using Real-Time PCR.

Results: The results demonstrated a significant reduction in the expression level of E-cadherin in cancer and precancerous cases than that in healthy cases; whereas the expression level of ZEB-1 and Snail1 were upregulated in cancer and precancerous samples. The receiver operating characteristic (ROC) analyses shows the highest AUC value emerged for Snail1: 1(95% CI: 1-1) in comparing CC and healthy groups with a sensitivity of 100.0 % and specificity of 100.0%.

Conclusion: The molecular biomarker Snail1 may be helpful to early diagnosis and prognosis of CC in the HPV-infected human populations. Considering the increased expression level of Snail1 in cancer and precancerous tissue compared to healthy tissue as well as the area under the ROC curve, Snail1 can be used for early detection of CC.

References

1. Duenas-Gonzalez A, Serrano-Olvera A, Cetina L, et al (2014). New molecular targets against cervical cancer. Int J Womens Health, 6: 1023-31.
2. Siegel RL, Miller KD, Jemal A (2017). Cancer Statistics. CA Cancer J Clin, 67: 7-30.
3. Freddie B, Ahmedin J, Nathan G, et al (2012). Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol, 13: 790-801.
4. Bruni L, Albero G, Serrano B, et al (2014). ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. Summary Report 2015. HPV information center.
5. zur Hausen H (1999). Papillomaviruses in human cancers. Proc Assoc Am Physicians, 111: 581-7.
6. Munoz N, Castellsague X, de Gonzalez AB, et al (2006). HPV in the etiology of human cancer. Vaccine, 3:S3/1-10.
7. Moody CA, Laimins LA (2010). Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 10(8):550-60.
8. Troha M, sterbenc A, Mlaker M, et al (2018). Human papillomavirus (HPV) infection and vaccination: knowledge and attitudes among healthcare professionals and the general public in Slovenia. Acta Dermatovenerol Alp Pannonica Adriat, 27(2):59-64.
9. zur Hausen H (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer, 2(5): 342-50.
10. Walboomers JM, Jacobs MV, Manos MM, et al (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189(1): 12-9.
11. Guo F, Cofie LE, Berenson AB (2018). Cervical Cancer Incidence in Young U.S. Females After Human Papillomavirus Vaccine Introduction. Am J Prev Med, 55(2):197-204.
12. Stoler MH (2003). Human papillomavirus biology and cervical neoplasia: implications for diagnostic criteria and testing. Arch Pathol Lab Med, 127(8): 935-9.
13. Li TY, Wu ZN, Jiang MY (2018). Association between high risk human papillomavirus DNA load and cervical lesions in different infection status. Zhonghua Zhong Liu Za Zhi, 40(6): 475-480.
14. Geiger T, Sabanay H, Kravchenko-Balasha N, et al (2008). Anomalous features of EMT during keratinocyte transformation. PLoS One, 3: e1574.
15. Marcucci F, Stassi G, De Maria R, et al (2016). Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov, 15(5):311-25.
16. Thiery JP (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6):442-54.
17. Perl AK, Wilgenbus P, Dahl U, et al (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672):190-3.
18. Moustakas A, de Herreros AG (2017). Epithelial-mesenchymal transition in cancer. Mol Oncol, 11: 715-717.
19. Derksen PW, Liu X, Saridin F, van der Gulden H, et al (2006). Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell, 10(5): 437-49.
20. Gould Rothberg BE, Bracken MB (2006). E-cadherin immunohistochemical expression as a prognostic factor in infiltrating ductal carcinoma of the breast: a systematic review and meta-analysis. Breast Cancer Res Treat, 100(2): 139-48.
21. Hirohashi S (1998). Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol, 153(2): 333-9.
22. Mareel M, Berx G, Van Roy F, et al (1996).Cadherin/catenin complex: a target for antiinvasive therapy? J Cell Biochem, 61: 524-30.
23. Mazzolini R, Gonzalez N, Garcia-Garijo A, et al (2018). Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res, 46(1): 146-158.
24. Barrallo-Gimeno A, Nieto MA (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 132: 3151-61.
25. Hao F, Liu J, Zhong M et al (2018). Expression of E-cadherin, vimentin and beta-catenin in ameloblastoma and association with clinicopathological characteristics of ameloblastoma. Int J Clin Exp Pathol, 11(1): 199–207.
26. Yan L, Li Y, Shi Z, et al (2017). The zinc finger E-box-binding homeobox 1 (Zeb1) promotes the conversion of mouse fibroblasts into functional neurons. J Biol Chem, 292(31):12959-12970.
27. Yoshida J, Horiuchi A, Kikuchi N, et al (2009). Changes in the expression of E-cadherin repressors, Snail, Slug, SIP1, and Twist, in the development and progression of ovarian carcinoma: the important role of Snail in ovarian tumorigenesis and progression. Med Mol Morphol, 42(2):82-91.
28. Davidson B, Trope CG, Reich R (2012). Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol, 2: 33.
29. Baulida J, Garcia de Herreros A (2015). Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy. Biochim Biophys Acta, 1856(1):55-61.
30. Carver EA, Jiang R, Lan Y, et al (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol, 21(23): 8184–8188.
31. Nieto MA, Huang RY, Jackson RA, et al (2016). EMT: 2016. Cell, 166(1):21-45.
32. Lee MY, Chou CY, Tang MJ, et al (2008). Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res, 14(15):4743-50.
33. Liao TT, Yang MH (2017). Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol, 11(7): 792-804.
34. Doutre S, Omar T, Goumbri-Lompo O, et al (2018). Cervical intraepithelial neoplasia (CIN) in African women living with HIV: role and effect of rigorous histopathological review by a panel of pathologists in the HARP study endpoint determination. J Clin Pathol, 71(1):40-45.
35. Grinstein M, Dingwall HL, Shah RR, et al (2018). A robust method for RNA extraction and purification from a single adult mouse tendon. PeerJ, 6: e4664.
36. Faghihloo E, Akbari A, Adjaminezhad-Fard F, et al (2016).Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines. Iran J Basic Med Sci, 19(6): 601–607.
37. Renthal NE, Chen CC, Williams KC, et al (2010). miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A, 107(48):20828-33.
38. Hotz B, Arndt M, Dullat S, Bhargava S, et al (2007). Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res, 13(16):4769-76.
39. Yu Q, Zhang K, Wang X, et al (2010). Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res, 29(1):119.
40. Jafarian M, Mozhgani SH, Patrad E, et al (2017). Evaluation of INOS, ICAM-1, and VCAM-1 gene expression: A study of adult T cell leukemia malignancy associated with HTLV-1. Arch Virol, 162(4):1009-1015.
41. Yang Y, Xie YJ, Xu Q, et al (2015). Down-regulation of miR-1246 in cervical cancer tissues and its clinical significance. Gynecol Oncol, 138(3):683-8.
42. Sossey-Alaoui K, Plow EF (2016). miR-138-Mediated Regulation of KINDLIN-2 Expression Modulates Sensitivity to Chemotherapeutics. Mol Cancer Res, 14(2):228-38.
43. Sossey-Alaoui K, Pluskota E, Davuluri G, et al (2014). Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. FASEB J, 28(5):2260-71.
44. Sabbah M, Emami S, Redeuilh G, et al (2008). Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat, 11(4-5):123-51.
45. Yilmaz M, Christofori G (2010). Mechanisms of motility in metastasizing cells. Mol Cancer Res, 8(5):629-42.
46. Yilmaz M, Christofori G (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 28(1-2):15-33.
47. Lambert AW, Pattabiraman DR, Weinberg RA (2017). Emerging Biological Principles of Metastasis. Cell, 168(4):670-691.
48. Jolly MK, Boareto M, Huang B, et al (2015). Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol, 5: 155.
49. De Craene B, Berx G (2013). Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer, 13(2):97-110.
50. Ohira T, Gemmill RM, Ferguson K, et al (2003). WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci U S A, 100(18):10429-34.
51. Takeyama Y, Sato M, Horio M, et al (2010). Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett, 296(2):216-24.
52. Jean Paul Thiery, Hervé Acloque, Ruby Y J Huang, M Angela Nieto (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5):871-90.
53. de Boer CJ, van Dorst E, van Krieken H, et al (1999). Changing roles of cadherins and catenins during progression of squamous intraepithelial lesions in the uterine cervix. Am J Pathol, 155(2): 505–515.
54. Birchmeier W, Behrens J (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta, 1198(1):11-26.
55. Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2):215-33.
56. Tan HX, Wang Q, Chen LZ, et al (2010). MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol, 27(3):654-60.
57. Wang B, Herman-Edelstein M, Koh P, et al (2010). E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes, 59(7): 1794–1802.
58. Zeisberg M, Neilson EG (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 119(6): 1429–1437.
59. Batlle E, Sancho E, Franci C, et al (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2(2):84-9.
60. Lyons JG, Patel V, Roue NC, et al (2008). Snail up-regulates proinflammatory mediators and inhibits differentiation in oral keratinocytes. Cancer Res, 68(12): 4525–4530 .
61. Weber KL, Doucet M, Price JE (2003). Renal cell carcinoma bone metastasis: epidermal growth factor receptor targeting. Clin Orthop Relat Res, (415 Suppl): S86-94.
62. Singh M, Spoelstra NS, Jean A, et al (2008). ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol, 21(7):912-23.
63. Karihtala P, Auvinen P, Kauppila S, et al (2013 ). Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-like breast cancers: association with an aggressive tumour phenotype. Breast Cancer Res Treat, 138(1):81-90.
64. Ran J, Lin DL, Wu RF, et al (2015). ZEB1 promotes epithelial-mesenchymal transition in cervical cancer metastasis. Fertil Steril, 03(6):1606-14.e1-2.
65. Kudo-Saito C, Shirako H, Takeuchi T, et al (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3):195-206.
66. Singh M, Spoelstra NS, Jean A, et al (2008). ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol, 21(7):912-23.
67. Chua HL, Bhat-Nakshatri P, Clare SE, et al (2007). NF-[kappa] B represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26(5):711-24.
68. Kleer CG, Zhang Y, Pan Q, et al (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia, 6(2): 179–185.
69. Burk U, Schubert J, Wellner U, et al (2008). A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9(6): 582–589.
70. Wang F, Sloss C, Zhang X, et al (2007). Membrane-Bound Heparin-Binding Epidermal Growth Factor–Like Growth Factor Regulates E-Cadherin Expression in Pancreatic Carcinoma Cells. Cancer Res, 67(18):8486-93.
Published
2020-10-27
How to Cite
1.
FARZANEHPOUR M, FAGHIHLOO E, SALIMI V, JALILVAND S, AKHAVAN S, MUHAMMADNEJAD A, EMAMI RAZAVI AN, KAKAVANDI E, MOKHTARI AZAD T. Comparison of Snail1, ZEB1, E-Cadherin Expression Levels in HPV-Induced Cervical Cancer. Iran J Public Health. 49(11):2179-2188.
Section
Original Article(s)