Medical Imaging Technologists in Radiomics Era: An Alice in Wonderland Problem
Abstract
No Abstract###
1. Abdollahi H, Mostafaei S, Cheraghi S et al (2018). Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: A machine learning and multi-variable modelling study. Phys Med, 45:192-7.
2. Abdollahi H, Mahdavi SR, Mofid B et al (2018). Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity. Int J Radiat Biol. 94(9):829-837
3. Chalkidou A, O’Doherty MJ, Marsden PK (2015). False discovery rates in PET and CT studies with texture features: a systematic review. PloS One,10(5):e0124165.
4. Kumar V, Gu Y, Basu S et al (2012). Radiomics: the process and the challenges. Magn Reson Imaging, 30(9):1234-48.
5. Shiri I, Rahmim A, Ghaffarian P et al (2017). The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol, 27(11):4498-4509.
6. Saeedi E, Dezhkam A, Beigi J et al (2018). Radiomic Feature Robustness and Reproducibility in Quantitative Bone Radiography: A Study on Radiologic Parameter Changes. pii: S1094-6950(18)30070-2
7. Radiology ESo (2015). ESR position paper on imaging biobanks. Insights Imaging, 6(4):403-10.
8. Alberich-Bayarri Á, Hernández-Navarro R, Ruiz-Martínez E et al (2017). Development of imaging biomarkers and generation of big data. Radiol Med, 122(6):444-8.
2. Abdollahi H, Mahdavi SR, Mofid B et al (2018). Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity. Int J Radiat Biol. 94(9):829-837
3. Chalkidou A, O’Doherty MJ, Marsden PK (2015). False discovery rates in PET and CT studies with texture features: a systematic review. PloS One,10(5):e0124165.
4. Kumar V, Gu Y, Basu S et al (2012). Radiomics: the process and the challenges. Magn Reson Imaging, 30(9):1234-48.
5. Shiri I, Rahmim A, Ghaffarian P et al (2017). The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol, 27(11):4498-4509.
6. Saeedi E, Dezhkam A, Beigi J et al (2018). Radiomic Feature Robustness and Reproducibility in Quantitative Bone Radiography: A Study on Radiologic Parameter Changes. pii: S1094-6950(18)30070-2
7. Radiology ESo (2015). ESR position paper on imaging biobanks. Insights Imaging, 6(4):403-10.
8. Alberich-Bayarri Á, Hernández-Navarro R, Ruiz-Martínez E et al (2017). Development of imaging biomarkers and generation of big data. Radiol Med, 122(6):444-8.
Files | ||
Issue | Vol 48 No 1 (2019) | |
Section | Letter to the Editor | |
DOI | https://doi.org/10.18502/ijph.v48i1.811 | |
Keywords | ||
No keywords### |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
ABDOLLAHI H, SHIRI I, HEYDARI M. Medical Imaging Technologists in Radiomics Era: An Alice in Wonderland Problem. Iran J Public Health. 2019;48(1):184-186.