Phylogeography and Genetic Diversity of Human Hydatidosis in Bordering the Caspian Sea, Northern Iran by Focusing on Echinococcus granulosus Sensu Stricto Complex
Abstract
Background: Human Echinococcosisis a cyclo-zoonotic infection caused by tapeworms of the Echinococcus granulosus sensu stricto complex. The detection of mitochondrial genome data of genus Echinococcus can reflect the taxonomic status, genetic diversity, and population structure genetics.
Methods: Totally, 52 formalin-fixed paraffin-embedded (FFPE) tissue samples from patients with histologically confirmed CE were collected from Mazandaran province, Iran in the period of Mar 1995 to May 2018. All extracted DNAs from (FFPE) tissue samples were subjected to amplify by polymerase chain reactions method targeting cytochrome c oxidase subunit 1 (cox1) gene. All PCR amplicons were sequenced to phylogenetic analysis and genetic diversity.
Results: Molecular analysis showed that 50(96.1%) and 2 (3.84%) isolates were identified as G1 andG3 E. granulosus genotypes, respectively. DNA sequence analyses indicated a high gene diversity for G1 (Haplotype diversity: 0.830) and G3 genotypes (Hd: 1.00). Based on multiple sequence alignment analyses, 7 (13.46%; G1 genotype) and 2 (3.84%; G3 genotype) new haplotypes were unequivocally identified.
Conclusion: G3 genotype (Buffalo strain) was identified from two human hydatidosis isolates in the region. Present study strengthens our knowledge about taxonomic status, transmission patterns of Echinococcus parasite to human and heterogeneity aspects of this parasite in clinical CE isolates of Northern Iran.
2. Otero-Abad B, Torgerson PR (2013). A systematic review of the epidemiology of echinococcosis in domestic and wild animals. PLoS Negl Trop Dis, 7 (6):e2249.
3. Brunetti E, Garcia HH, Junghanss T, et al (2011). Cystic echinococcosis: chronic, complex, and still neglected. PLoS Negl Trop Dis, 5 (7):e1146.
4. Zhang W, Zhang Z, Wu W, et al (2015). Epidemiology and control of echinococcosis in central Asia, with particular reference to the People's Republic of China. Acta Trop, 141 (Pt B):235-43.
5. Carmena D, Sanchez-Serrano LP, Barbero-Martinez I (2008). Echinococcus granulosus infection in Spain. Zoonoses Public Health, 55 (3):156-65.
6. Craig PS, McManus DP, Lightowlers MW, et al (2007). Prevention and control of cystic echinococcosis. Lancet Infect Dis, 7 (6):385-94.
7. Buishi I, Njoroge E, Zeyhle E, et al (2006). Canine echinococcosis in Turkana (north-western Kenya): a coproantigen survey in the previous hydatid-control area and an analysis of risk factors. Ann Trop Med Parasitol, 100 (7):601-10.
8. Siracusano A, Delunardo F, Teggi A, Ortona E (2012). Host-parasite relationship in cystic echinococcosis: an evolving story. Clin Dev Immunol, 2012:639362.
9. Buishi IE, Njoroge EM, Bouamra O, Craig PS (2005). Canine echinococcosis in northwest Libya: assessment of coproantigen ELISA, and a survey of infection with analysis of risk-factors. Vet Parasitol, 130 (3-4):223-232.
10. Buishi I, Walters T, Guildea Z, et al (2005). Reemergence of canine Echinococcus granulosus infection, Wales. Emerg Infect Dis, 11 (4):568-571.
11. Belli S, Akbulut S, Erbay G, Kocer NE (2014). Spontaneous giant splenic hydatid cyst rupture causing fatal anaphylactic shock: a case report and brief literature review. Turk J Gastroenterol, 25 (1):88-91.
12. Engin G, Acunas B, Rozanes I, Acunas G (2000). Hydatid disease with unusual localization. Eur Radiol, 10 (12):1904-1912.
13. Galeh TM, Spotin A, Mahami-Oskouei M, et al (2018). The seroprevalence rate and population genetic structure of human cystic echinococcosis in the Middle East: A systematic review and meta-analysis. Int J Surg, 51:39-48.
14. Ebrahimipour M, Sadjjadi SM, Yousofi Darani H, Najjari M (2017). Molecular Studies on Cystic Echinococcosis of Camel (Camelus dromedarius) and Report of Echinococcus ortleppi in Iran. Iran J Parasitol, 12 (3):323-331
15. Fadakar B, Tabatabaei N, Borji H, Naghibi A (2015). Genotyping of Echinococcus granulosus from goats and sheep indicating G7 genotype in goats in the Northeast of Iran. Vet Parasitol, 214 (1-2):204-7.
16. Fasihi Harandi M, Budke CM, Rostami S (2012). The monetary burden of cystic echinococcosis in Iran. PLoS Negl Trop Dis, 6 (11):e1915.
17. McManus DP, Thompson RC (2003). Molecular epidemiology of cystic echinococcosis. Parasitology, 127:S37-51
18. McManus DP (2002). The molecular epidemiology of Echinococcus granulosus and cystic hydatid disease. Trans R Soc Trop Med Hyg, 1:S151-157
19. Gholami I, Daryani A, Sharif M, et al (2011). Seroepidemiological survey of helminthic parasites of stray dogs in Sari City, northern Iran. Pak J Biol Sci, 14 (2):133-7
20. Schneider R, Gollackner B, Schindl M, et al (2010). Echinococcus canadensis G7 (pig strain): an underestimated cause of cystic echinococcosis in Austria. Am J Trop Med Hyg, 82 (5):871-874.
21. Bowles J, Blair D, McManus DP (1992). Genetic variants within the genus Echino-coccus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol, 54(2):165-73.
22. Bandelt HJ, Forster P, Rohl A (1999). Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 16 (1):37-48.
23. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19 (18):2496-7.
24. Noori J, Spotin A, Ahmadpour E, et al (2018). The potential role of toll-like receptor 4 Asp299Gly polymorphism and its association with recurrent cystic echinococcosis in postoperative patients. Parasitol Res, 117 (6):1717-1727.
25. Grosso G, Gruttadauria S, Biondi A, et al (2012). Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol, 18 (13):1425-1437.
26. Woolhouse ME, Gowtage-Sequeria S (2005). Host range and emerging and reemerging pathogens. Emerg Infect Dis, 11 (12):1842-1847.
27. Rojas CAA, Romig T, Lightowlers MW (2014). Echinococcus granulosus sensu lato genotypes infecting humans–review of current knowledge. Int J Parasitol, 44 (1):9-18
28. Mahami-Oskouei M, Kaseb-Yazdanparast A, Spotin A, et al (2016). Gene flow for Echinococcus granulosus metapopulations determined by mitochondrial sequences: a reliable approach for reflecting epidemiological drift of parasite among neighboring countries. Exp Parasitol, 171:77-83
29. Mokhtari Amirmajdi M, Sankian M, Eftekharzadeh Mashhadi I, et al(2011). Apoptosis of human lymphocytes after exposure to hydatid fluid. Iran J Parasitol, 6 (2):9-16
30. Spotin A, Mahami-Oskouei M, Harandi MF, et al (2017). Genetic variability of Echinococcus granulosus complex in various geographical populations of Iran inferred by mitochondrial DNA sequences. Acta Trop, 165:10-16
31. Gholami S, Sosari M, Fakhar M, et al (2012). Molecular Characterization of Echinococcus granulosus from Hydatid Cysts Isolated from Human and Animals in Golestan Province, North of Iran. Iran J Parasitol, 7 (4):8-16
32. Sadjjadi S, Mikaeili F, Karamian M, et al (2013). Evidence that the Echinococcus granulosus G6 genotype has an affinity for the brain in humans. Int J Parasitol, 43 (11):875-7.
33. Gholami S, Jahandar H, Abastabar M, et al (2016). Echinococcus granulosus sensu stricto in dogs and jackals from Caspian Sea re-gion, northern Iran. Int J Parasitol, 11(2):186-194.
34. Sharbatkhori M, Tanzifi A, Rostami S, et al (2016). Echinococcus granulosus sensu lato genotypes in domestic livestock and humans in Golestan province, Iran. Rev Inst Med Trop Sao Paulo,58:38.
Files | ||
Issue | Vol 49 No 9 (2020) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijph.v49i9.4097 | |
PMCID | PMC7898111 | |
PMID | 33643952 | |
Keywords | ||
Human hydatidosis Genetic diversity Phylogeography Iran |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |