Iranian Journal of Public Health 2017. 46(5):682-692.

An Efficient Predictive Model for Myocardial Infarction Using Cost-sensitive J48 Model
Atefeh DARAEI, Hodjat HAMIDI


Background: Myocardial infarction (MI) occurs due to heart muscle death that costs like human life, which is higher than the treatment costs. This study aimed to present an MI prediction model using classification data mining methods, which consider the imbalance nature of the problem.

Methods: We enrolled 455 healthy and 295 myocardial infarction cases of visitors to Shahid Madani Specialized Hospital, Khorramabad, Iran, in 2015. Then, a hybrid feature selection method included Weight by Relief and Genetic algorithm applied on the dataset to select the best features. After selection of the features, the metacost classifier applied on the sampled dataset. Metacost made a cost sensitive J48 model by assigning different costs ratios for misclassified cases; include 1:10, 1:50, 1:100, 1:150 and 1:200.

Results: After applying the model on the imbalanced dataset, the cost ratio 1:200 led to the best results in comparison to not using feature selection and cost sensitive model. The model achieved sensitivity, F-measure and accuracy of 86.67%, 80% and 82.67%, respectively.

Conclusion: Experiments on the real dataset showed that using the cost-sensitive method along with the hybrid feature selection method improved model performance. Therefore, the model considered a reliable Myocardial Infarction prediction model.


Keywords: Myocardial infarction, Heart disease, Metacost, Cost-sensitive J48, Weight by relief


Full Text:



  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.