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Introduction 
 
In scientific studies, models are built after simpli-
fication of the object or event they intend to rep-
resent, should be verified, and if necessary, modi-
fied. In many applications the trueness of the 
model is of less importance than its adequacy for 
the intended application (1). Here, some examples 
are presented as representative applications of the 
field of molecular modeling in endocrinology. 
These two fields are chosen with regard to their 
more concrete applications in medical sciences, 
and this is an overview that should be considered 
as a glance into this vast subject. 
 
Molecular Modeling 
Molecular modeling is related to structural bioin-
formatics and concerns static and dynamic repre-
sentations of macromolecules and ligands struc-
tures and interactions in computers. Of the many 

subjects of molecular modeling, some examples 
are described involving protein modeling, and 
computational drug design (which includes QSAR 
methods, docking and virtual screening among 
others). Protein modeling is the prediction of a 
three-dimensional structure for a protein of which 
only the amino acid sequence is known. Either 
comparative modeling ( homology modeling) is 
used, with the use of a similar protein structure (2), 
or secondary structure predictions and use of ab 
initio methods is performed, that could predict 
the three-dimensional structure of a protein di-
rectly from its amino acid sequence (3). Refine-
ment of the obtained models _as well as access to 
a dynamical picture of the protein or pro-
tein/ligand interaction_ is sometimes done by us-
ing molecular dynamics simulations (4). For a 
more detailed description of current issues in pro-
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tein modeling, interested readers are referred to a 
recent review (5). Docking methods are essentially 
computer algorithms that give information on the 
possible binding site and binding mode of a ligand 
into a macromolecule or about macromolecule 
interactions with each other, such as protein-pro-
tein interactions (6). Each docked compound is 
given a score which is used in order to select the 
potentially most active compounds (7). Virtual 
screening is the process of searching for potential 
ligands of a particular target between thousands or 
even millions of compound that are synthesized in 
silico (in computer) (8). QSAR (quantitative struc-
ture-activity relationship) is also used in defining 
effective structural properties of potential drugs: 
this method finds a suitable equation that would 
summarize the physicochemical properties of a set 
of ligands. This equation could then be used in 
order to predict the effectiveness of novel com-
pounds (9). 
Each of these techniques has its own uses and 
limitations, and it should be mentioned that in the 
processes of drug design, a combination of these 
methods is usually applied. 
 
Protein modeling examples 
 
Wolframin 
In the study of transmembrane proteins such as 
wolframin, computational methods have been 
privileged, due to practical difficulties that exist in 
the preparation of this class of proteins (10). Usu-
ally, an approximation is given about the location 
of their transmembrane segments, and their over-
all topology, i.e. a two-dimensional model is built. 
Wolframin is involved in wolfram syndrome, for 
which more than 160 mutations have been de-
tected at amino acid level (Lesperance MM. WFS1 
Gene Mutation and Polymorphism Database). In 
order to give some insight into the possible effect 
of some novel mutations, topology prediction was 
done with the use of several algorithms, and the 
best model was chosen in accordance with experi-
mental data (Fig.1). In these cases, the impact of 
single amino acid mutations could be hypothe-
sized _to some extent_ based on their biochemical 
properties and putative locations (11). 

 
CYP 21A2 
One of the most common form of congenital ad-
renal hyperplasia, results from 21-hydroxylase de-
ficiency, which is caused by mutations in the en-
coding gene CYP21A2 (12). Models of the protein 
have been built in several studies, and novel muta-
tions introduced and studied in these structures 
(13-15).   
 

 
 
Fig.1: Schematic representation of a simple structure 
prediction for trans-membrane segments wolframin. 
Prediction was made with the use of HMMTOP server 
(www.enzim.hu/hmmtop) 

 
In the case of an insertion mutation (962_963A), 
the model was able to show that both mutations 
would affect the heme-binding part of the protein 
and result in an incomplete P450 (13) (20). Asso-
ciating experimental and modeling studies, the 
effect of K121Q mutation was assessed both in 
vitro and in silico, with the experimental data indi-
cating a lower enzyme activity and decreased sub-
strate affinity. The model revealed then the posi-
tion of the mutated amino acid to be located in a 
helix possibly important in heme binding (14). An 
insertion of three valines at codon 71 was studied 
by a molecular dynamics simulation (15), using a 
previously reported model that had been useful in 
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explaining structural effects of about 60 disease-
linked mutations (16). The simulation suggested 
the generation of a more unstable structure of the 
mutant protein (15).  
CYP 17A1  
In a close context, modeling of cytochrome 
P450c17 (a 17A-hydroxylase/17, 20-lyase) has 
been performed in multiple studies, and the ef-
fects of structural modifications resulting from 
mutations (ending in sexual infantilism, amenor-
rhea, and pseudohermaphroditism) (17-21) has 
been done. Another potential use of these models 
could be in the design of structure-based inhibi-
tors of the enzyme, potentially effective in pros-
tate cancer (22). With a three-dimensional struc-
ture of the enzyme, docking of new ligands and 
molecular dynamics simulations was performed, in 
order to design other potential inhibitors such as 
inhibitors of type 5 17_beta-hydroxysteroid dehy-
drogenase, which would also be effective in pros-
tate cancer (23).  
 
MHCII 
Higher risk of developing Hashimoto’s thyroiditis 
(a type of autoimmune thyroid diseases) has been 
found to be associated with specific regions of 
HLA (human leukocyte antigen, the major histo-
compatibility complex in human) (24). A mod-
eling of HLA located a set of amino acids (Y26, 
Y30, Q70, and K71) positioned in the HLA-DR 
peptide-binding pocket that are associated with 
the disease. An interesting side-result of the mod-
eling work was the finding of a difference between 
the structure of the disease-associated pockets in 
human and mouse suggesting that results derived 
from mouse models could not be readily extrapo-
lated for human Hashimoto’s thyroiditis (25). As a 
previous study had shown the importance of R 74 
in HLA DR peptide binding pocket in Grave’s 
disease (26), targeting this region has been sug-
gested to have potential therapeutic effect (24). 
 
TPO 
Many cases of congenital hypothyroidism are re-
lated with thyroid peroxidase mutations (27). In a 
case of goitrous congenital hypothyroidism, a mu-
tation of Q660E was observed; a protein model of 

the mutant was generated and submitted to mo-
lecular dynamics simulation. Electrostatic binding 
energy calculation showed the possibility of less 
interaction between the heme group and the mu-
tant protein (28). In a rather different context, a 
model of the same protein was used to locate the 
putative amino acids that would be targeted by 
antibodies generated in autoimmune thyroid dis-
eases (29). 
 
Thyrotropin receptor 
Thyrotropin receptor (TSHR) is a G-protein cou-
pled receptor (GPCR), whose three-dimensional 
model has been used to clarify the potential roles 
of its various important regions. Experimental 
data was first gathered and checked with regard to 
the importance of the mutated residues, then fo-
cused modeling of particular segments such as 
extracellular loops and segments interacting with 
ligands (30, 31) and intracellular loops possessing 
a role in interacting with G-protein was per-
formed (32, 33).  
 
Mineral corticoid receptor  
Pseudohypoaldosteronism type 1 is related with 
mutations of the gene encoding the mineralcorti-
coid receptor. Clinical studies, experimental and 
modeling techniques were used in order to gener-
ate mutant receptors, and allow a closer observa-
tion of mutated residues. In this case, a crystal 
structure of this receptor was used (34), where the 
E972G mutation seemed to disturb a hydrogen 
bond networking that would change the location 
of a helix involved in ligand binding (35).  
 
Glucokinase 
Numerous activating and inactivating mutations 
have been reported for glucokinase, leading to 
hyperinsulinemic hypoglycemia and diabetes 
mellitus respectively. The enzyme, which converts 
glucose to glucose-6-phosphate, is allosterically 
regulated, and based on its structure a precise vis-
ualization of the missense mutations locations is 
possible (36). As example, the V62M mutation, 
located in the vicinity of the activating allosteric 
site, is active in vitro, but causes hyperglycemia in 
the patients bearing this mutation. It is the struc-
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ture and binding properties of the enzyme that 
may be affected, which are leading to hyperglyce-
mia via complex mechanisms resulting in defect of 
its regulation (37).  
 
pVHL  
von Hippel-Lindau (vHL) disease is related to ab-
normality of the VHL gene, whose product 
(pVHL) has been characterized and crystallized. 
pVHL makes interactions with Elongin B and C, 
and this complex is part of a ubiquitin protein lig-
ase. The available crystal structure allows the as-
sessment of the effect of single mutations, as in 
the case of R167W. This arginine residue is con-
served among species, and its mutation could lead 
to some disruption into the structure of pVHL, 
and subsequently, its interaction with Elongin C 
(38). 
 
 
Examples of docking, QSAR, and virtual 
screening  
 
GPR40 (FFAR1) 
GPR40 ligand was identified to be medium to 
long chain fatty acid, and this receptor, alongside 
with related GPCRs GPR41 and 43 has been since 
considered as a drug target. Overexpression of 
GPR40 in transgenic mice had led to enhanced 
insulin secretion in presence of high levels of glu-
cose, which is suggestive of potential therapeutic 
benefits upon activation of this receptor (39). A 
variety of agonists have been identified for 
GPR40 (40-43), and models of the receptor have 
been created in order to assess potentially im-
portant residues in ligand-receptor interactions (44, 
45). In these studies, virtual screening methods are 
applied in order to discover new ligands for the 
receptor (2,600000 compounds were screened in 
this case, resulting in 6 hits ) (42), docking meth-
ods could be used in order to position the ligand 
in its putative binding pocket, and molecular dy-
namics simulations follow in order to get a dy-
namic picture of residues involved in ligand-recep-
tor interactions (44, 45).  
 
Thyrotropin receptor  

Antagonists of thyrotropin receptor (TSHR) could 
be proposed as potential therapeutic for therapeu-
tic agents for the treatment of Graves’ disease (46). 
Based on the similarity of this receptor with the 
luteinizing hormone/ chorionic gonadotropin re-
ceptor (LHCGR), a small molecule that was previ-
ously identified as partial agonist of that receptor 
(47) was tested for the thyrotropin receptor (31). 
Docking testing of this thienopyrimidine molecule 
performed on a model of TSHR resulted into de-
tecting a putative binding site. This small molecule 
proved to be also a partial agonist of TSHR in ex-
perimental studies, but with lower potency com-
pared with LHCGR (31). In a subsequent study, 
another model of the complex between TSHR 
and the partial agonist was used, novel com-
pounds were synthesized and one compound 
found to be a moderate specific antagonist of the 
receptor. Docking of that compound into the re-
ceptor suggested that it would act by blocking the 
access of agonists to deeper regions of the binding 
pocket (46).  
 
Androgen receptor  
In conditions such as prostate cancer and alopecia, 
antagonists of the androgen receptor could be 
considered as therapeutics. Multiple non-steroidal 
compounds have been reported as antagonists of 
this receptor including structures containing in-
dole (48), thiohydantoin (49, 50), benzopyran (51), 
benzonitrile (52, 53), and phenylpyridine (54). 
QSAR models have been formulated with a gen-
eral view on antagonists (55) and for specific 
structures, for which the QSAR model has been 
utilized in a virtual screening to discover potential 
lead compounds (54).  
 
P21 activated kinases inhibitors 
Inhibiting various protein kinases is a proven gen-
eral anti-cancer therapeutic mean, which has been 
recently highlighted in the treatment of endocrine 
tumors (56). P21 activated kinases (PAK) are also 
being considered as interesting targets in this re-
gard. These possess important roles in diverse cel-
lular processes, and have been shown to be also 
part of the downstream effectors of phosph-
oinositide-dependent kinase 1 (57). Their active-
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tion could also contribute to cell survival (58). 
Thus, small molecule inhibitors of PAK have 
been studied (59). However, due to the difficulty 
of designing selective drugs toward ATP-binding 
pockets, efforts are now directed to the design of 
compounds that would target the allosteric bind-
ing site of the enzyme, and act specifically on this 
enzyme (60, 61). In this regard the enzyme struc-
ture is used in order to assess inhibitors mode of 
action, and refine their structures to obtain better 
compounds (62).  
 
Cholesterol esterase inhibitors  
Cholesterol esterase (CEase) catalyzes the hydroly-
sis of cholesterol ester which produces free cho-
lesterol and inhibitors of this enzyme could be 
lowering cholesterol agents, as this has been 
shown in hamsters (63). As examples of inhibitors, 
isocoumarin-based molecules (64) and carbamate 
derivatives (65) could be named. Concerning the 
latter structures, classical QSAR studies have been 
performed for various derivatives (65-68). An in-
teresting approach has been a more detailed analy-
sis of the process, by dissociating the enzyme-
inhibitory complex formation into two steps, 
which could result into a more precise view of the 
mechanistic details of the inhibitory process (65).  
 
11 beta hydroxysteroid dehydrogenase type 1 
inhibitors  
Inhibitors of 11beta-hydroxysteroid dehydrogen-
ase type 1 have been shown to be effective in 
mouse models (69) and recently in human (70) as 
antidiabetic agents that improve glucose metabo-
lism. This enzyme catalyzes the conversion of cor-
tisone to the active cortisol, and thus its inhibition, 
resulting in lower glucocorticoid activity, is sug-
gested to be of use in metabolic and cardiovascu-
lar diseases (71). A variety of inhibitors have been 
designed and tested for this enzyme (72, 73). As 
usual in these research projects, docking of known 
chemicals into the enzyme structure would lead to 
insights on their binding modes and lead to the 
design of potentially more effective compounds 
(74). In the case of this enzyme, several pdb files 
are available which contain co-crystallized inhibi-
tors (e.g. 3DQ5,3D4N,3-D3E,3BZU,2BEL). 

 
Alpha-glucosidase and alpha-amylase inhibitors 
A way to lower post-prandial hyperglycemia is the 
inhibition of enzymes that are involved in carbo-
hydrate digestion. Acarbose has been the first of 
these agents to be commercialized as a drug, fol-
lowed by miglitol and voglibose (75-77). An inter-
esting finding has been the fact that these com-
pounds may also possess preventive potential in 
the development of diabetes (78) and obesity (79), 
while increase of secretion of GLP1 has also been 
observed in the case of voglibose (80). Side effects 
of these drugs include gastro-intestinal problems, 
and mainly flatulence and diarrhea (81, 82). Multi-
ple studies have been directed toward the charac-
terization of other effective alpha-glucosidase in-
hibitors, many from natural sources (e.g. (83, 84)) 
and others based on synthesized structure (85). 
With the recent crystallization of the human al-
pha-glucosidase with inhibitors (86), structure-
based design of inhibitors will finally become pos-
sible. Acarbose could also inhibit mammalian al-
pha-amylase (87), and protein extracts of white 
kidney bean have been shown to be inhibitors of 
this enzyme (88), and capable of antidiabetic ef-
fect in rats (89). Although there is still no alpha-
amylase inhibitor officially marketed as antidiabet-
ic/antiobesity agent , multiple studies report small 
molecules inhibitors of this enzyme (90-93), which 
have also been shown to be effective in vivo, in an 
animal model (94). Three-dimensional structure of 
alpha-amylase is available, but as to the inhibitors, 
proteinaceous ones have been mainly co-
crystallized with the enzyme, which prompts the 
use of modeling techniques in order to provide an 
idea about the interactions between small mole-
cule inhibitors and the enzyme (92, 93), and de-
sign of novel compounds. Molecules showing dual 
inhibitory activity toward both glucosidase and 
amylase (95) could also be of interest. 
 

Conclusion  
 
Modeling techniques are now widely used in vari-
ous areas of medical sciences, ranging from clini-
cal practice to more basic fields (e.g. assessing the 
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impact of a missense mutation on a protein struc-
ture). Given the advent of more powerful com-
puter technologies, this highly interdisciplinary 
subject will continue to develop and propose new 
applications to the medical community.  
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