Epidemiology of Traumatic Brain Injury in Iran: A Systematic Review and Meta-Analysis

Mohsen Saheban Maleki¹, Seyed Amirhossein Mazaheri², Seyed Hossein Hosseini³, Hesamedin Askari Majdabadi⁴, Mohsen Poursadegiyan⁵, Aboalfazl Faghihi⁶, Zeinab Naderi⁷, Tayebeh Ilaghinezhad Bardsiri⁷, Behzad Khedri⁸, Nasir Amanat⁴, *Farahnaz Khajehnasiri⁹, *Reyhaneh Ivanbagha¹⁰

1. Department of Anesthesia, Clinical Research Developmental Unit Behlooq Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
2. Student Research Committee, Azerbaijan Medical University, Baku, Azerbaijan
3. Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
4. Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
5. Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
6. Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
7. Department of Nursing, Sirjan School of Medical Sciences, Sirjan, Iran
8. Department of Social Work, Social Studies Faculty, Hanze University of Applied Science, Groningen, Netherlands
9. Department of Community Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
10. Department of Midwifery, School of Nursing, Tabriz University of Medical Sciences, Tabriz, Iran

*Corresponding Authors: Email: khajenasiri@tums.ac.ir; ivanbaghar2015@gmail.com

(Received 06 Dec 2022; accepted 15 Mar 2023)

Abstract

Background: Traumatic brain injury (TBI) is one of the leading causes of death and disability in Iran that has serious consequences on people’s health. Understanding of epidemiology of TBI can be helpful for policy making in health care management. Therefore, this study aimed to examine the epidemiology of TBI in Iran.

Methods: PubMed, Web of Science, Scopus, Google scholar, and internal databases including, SID, Magiran, and IranMedex were searched to identify the relevant published studies up to Feb 2022. Moreover, the references list of key studies was scanned to find more records. The Joanna Briggs Institute (JBI) tool was used to assess the quality of included studies. The Excel and Comprehensive Meta-Analysis software were to analyze the data.

Results: Overall, 23,446 patients from 15 studies were included in the study. The overall mean age of the patients was 31.36 ± 0.13 yr (95% CI: 31.10 to 31.61). The majority of the patients were male (74.37%), with a male to female ratio of 3:1. The incidence rate of TBI was 15.3 to 144 per 100,000 population. The mortality rate of TBI was estimated to be 10.4% (95% CI: 5% to 19%). The most common causes of injury were road traffic accidents (RTAs) (60%); 95% CI: 49% to 70%), and falling (20%; 95% CI: 16% to 26%), respectively. The most frequent type of head injury was subdural hematoma.

Conclusion: Our findings highlight that appropriate control and prevention strategies should be focused on male, road traffic accidents, and the group under 40 yr.

Keywords: Brain injuries; Epidemiology; Prevalence; Incidence; Risk factors
Introduction

Traumatic brain injury (TBI) is a major cause of death and long-term disability in developed and developing countries across the world (1, 2) and responsible for one-half of all trauma deaths (3). TBI is defined as the disruption in brain function, or other evidence of brain pathology, caused by an external physical force (4). According to the Glasgow Coma Scale (GCS), TBI is classified based on severity into three categories: mild, moderate, and severe (5). The most common causes of TBI are falls, motor vehicle collisions, assaults (6, 7). Age ≥75 yr, male sex (8), injury severity, comorbidity, length of hospital stay, and rate of in-hospital mortality have been suggested as risk factors related to TBI (9).

TBI is one of the main causes of mortality and morbidity due to trauma in Iran (10). The consequences of TBI in Iran is significant in terms of economic burden (11). The yearly incidence of TBI is estimated at 50 million cases worldwide (12). In Europe, the overall incidence of TBI is 262 per 100,000 population (13). In addition, in the United States, TBI incidence rate is between 180 and 250 per 100,000 population per year (14). The prevalence of TBI in low- and middle-income countries varies from 1% in China to 15% in Mexico and Venezuela (15). The incidence of TBI in Iran was reported at around 295/100,000 (16).

TBI is associated with a number of diseases such as Alzheimer’s disease (17), Parkinson’s disease (18), dementia (19), mild cognitive impairment, depression, mixed affective disorders (20), bipolar disorder (21), and sleep disturbances (22). Epidemiological characteristics of TBI such as cause and type of TBI vary from one country to another. Therefore, understanding epidemiology of TBI can be helpful for policy-making in the health care system (23). Since there is no currently systematic review and meta-analysis on the epidemiology of TBI in Iran, this study aimed to investigate the patients’ characteristics suffered from TBI, causes and patterns of TBIs, and mortality rate due to TBIs in Iran.

Materials and Methods

We used the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guideline (24) when writing our report.

Search strategy

A search systematic was performed in PubMed, Web of Science, Scopus, SID, Magiran, IranMedex, and Google scholar to identify the eligible published studies up to 31 Dec 2021. In addition, the references list of the key studies was reviewed to identify additional relevant resources. Studies were limited to English and Persian. Key search terms were traumatic brain injury, TBI, epidemiology, risk factor, mortality, prevalence, incidence, etiology, and Iran.

The following search strategy: (traumatic brain injury [Title/Abstract) OR (traumatic brain injury [MeSH Terms]) OR (TBI[Title/Abstract]) OR (brain injury [MeSH Terms]) OR (head injury [MeSH Terms]) OR (brain injury [Title/Abstract]) AND (Iran [Title/Abstract])

Study selection

Initially, duplicate articles were removed. Then, in the next step, the two authors independently reviewed the titles and abstracts of the articles. In the next step, the full text of the remaining articles was reviewed and excluded if they did not meet the inclusion criteria. Disputes between the two authors over whether or not the articles were eligible were resolved through discussion and the entry of a third author. The process of screening and identifying related articles was performed by two authors (RA and HAM) independently based on inclusion criteria. The inclusion criteria used for selecting the articles were including: 1) Population: Iranian populations with TBI, 2) Intervention: TBI, 3) Comparison: no TBI, 4) Outcome: mortality, prevalence, incidence, and risk factors. Case series, case reports, the letter to editors, and so forth were excluded.
Risk of bias assessment and certainty of evidence
The quality of included studies was evaluated using the Joanna Briggs Institute (JBI) critical appraisal checklist which contains eight questions addressing the quality and possibility of bias in a study (25). The grading of recommendations assessment, development and evaluation (GRADE) approach was used to assess the certainty in the body of evidence (26). This tool consists of five domains; risk of bias, inconsistency, indirectness, imprecision and publication bias.

Data extraction
Two authors (RA and HAM) independently extracted the epidemiological and demographic data using the identical extraction form. The extracted information was including, first author, year of publication, mean age, sex, province, sample size, study period, causes of TBI, most frequent types of head injuries, and mortality rate.

Statistical analysis
Excel and Comprehensive Meta-Analysis were used to analyze the data. The mean difference (MD) and the risk ratio (RR) with a 95% confidence interval (CI) were used for continues and dichotomous variables, respectively. High heterogeneity was considered as $I^2>50\%$ or $P<0.1$. The random-effects model was used for studies with high heterogeneity. Otherwise, we used the fixed-effect model.

Results

Study characteristics and design
The process of identifying, screening, and selecting studies based on the title, abstract, and full text of the studies by the two authors is shown in Fig. 1. Overall, 300 studies were identified and after eliminating duplicates, 184 studies were reviewed based on title and abstract, of which 165 studies were excluded according to inclusion criteria. The full text of the remaining 19 studies was reviewed, and finally, 15 studies (10, 23, 27-39) with 23446 people that met the inclusion criteria were included in the evidence synthesis. The period of publication of articles was between 2016 and 2020. The main characteristics of the studies included are shown in Table 1.
Table 1: Characteristics of studies included in systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Study period</th>
<th>City</th>
<th>Mean age</th>
<th>N</th>
<th>M/f</th>
<th>Causes of tbi</th>
<th>Most frequent types of head injuries</th>
<th>Mortality (m/f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahadi, 2018</td>
<td>2009-2013</td>
<td>Tehran</td>
<td>38.8 ± 18.7</td>
<td>3818</td>
<td>3306/512</td>
<td>Transport accidents, fall, exposure to mechanical forces, assault</td>
<td>Subarachnoid haemorrhage, diffuse, epidural haemorrhage, subdural haemorrhage</td>
<td>16% (15.3%/20.9%)</td>
</tr>
<tr>
<td>Saatian, 2017</td>
<td>2013-2016</td>
<td>Hamedan</td>
<td>29.7 ± 21.46</td>
<td>9426</td>
<td>6258/316</td>
<td>Vehicle accidents, various types of falls, assault by bodily force</td>
<td>Diffuse, subarachnoid haemorrhage, other intracranial injuries</td>
<td>4.79% (5.69%/3%)</td>
</tr>
<tr>
<td>Monsef kasmaei, 2015</td>
<td>2012-2013</td>
<td>Rasht</td>
<td>38.5 ± 21.7</td>
<td>1000</td>
<td>818/182</td>
<td>Motorbike rider, falling, same level falling, car accident, bike accident, intentional damage</td>
<td>Subdural, epidural bleeding</td>
<td>23.3% (82.6%/17.4%)</td>
</tr>
<tr>
<td>Khalili, 2017</td>
<td>2013-2014</td>
<td>Shiraz</td>
<td>34.8±15.5</td>
<td>142</td>
<td>127/15</td>
<td>Road traffic accidents, fall, others</td>
<td>Subdural haematoma, contusion, tight brain, epidural haematoma</td>
<td>40.8%</td>
</tr>
<tr>
<td>Khalili, 2016</td>
<td>2010-2012</td>
<td>Shiraz</td>
<td>34.6±16.6</td>
<td>248</td>
<td>216/32</td>
<td>Road traffic, fall, assault, others</td>
<td>Nr</td>
<td>Nr</td>
</tr>
<tr>
<td>Gilani, 2017</td>
<td>2008-2010</td>
<td>Kashan</td>
<td>35.4±8.6</td>
<td>239</td>
<td>208/31</td>
<td>Vehicle, fall and ball</td>
<td>Nr</td>
<td>Nr</td>
</tr>
<tr>
<td>Rezaei, 2015</td>
<td>2011-2012</td>
<td>Rasht</td>
<td>37.45±17.42</td>
<td>185</td>
<td>171/14</td>
<td>Motorcycle, acciendt, backfall, fall, pedestrian, hit the object</td>
<td>Nr</td>
<td>Nr</td>
</tr>
<tr>
<td>Saadat, 2012</td>
<td>1999-2004</td>
<td>Multi</td>
<td>30.1±19.11</td>
<td>2274</td>
<td>1794/480</td>
<td>Motor vehicle accidents, falls, assaults</td>
<td>Nr</td>
<td>16.9% (18.2%/12.2%)</td>
</tr>
<tr>
<td>Vañace, 2013</td>
<td>2012-2012</td>
<td>Tehran</td>
<td>33.1±19.11</td>
<td>4644</td>
<td>3459/1077</td>
<td>Road traffic, fall, assault, others</td>
<td>Nr</td>
<td>0.71%</td>
</tr>
<tr>
<td>Ziaeirad, 2018</td>
<td>2014-2015</td>
<td>Isfahan</td>
<td>43.86±18.40</td>
<td>267</td>
<td>233/34</td>
<td>Rtas, fall, others</td>
<td>Subdural haematoma, subarachnoid hemorrhage, cerebral edema, intracranial haematoma, epidural haematoma</td>
<td>Nr</td>
</tr>
<tr>
<td>Badcharin, 2021</td>
<td>2018</td>
<td>Tabriz</td>
<td>6.52±3.95</td>
<td>114</td>
<td>80/34</td>
<td>Traffic accidents, falling, pure head trauma</td>
<td>Traffic accidents, falling, pure head trauma</td>
<td>7.17%</td>
</tr>
</tbody>
</table>
Risk of bias assessment and quality of the evidence

The methodological quality of included studies was moderate, as presented in Table 2. Additionally, the quality of the evidence for each outcome is presented in Table 3.

Table 2: The result of quality assessment of included studies using Joanna Briggs Institute (JBI)

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahadi, 2018</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Saatian, 2017</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Kasmaei, 2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Khalili, 2017</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Khalili, 2016</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Gilani, 2017</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Rezaei, 2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Saadat, 2012</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Vafaee, 2013</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Ziaeirad, 2018</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
<tr>
<td>Badebarin, 2021</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Included</td>
</tr>
</tbody>
</table>
Patients’ demographics
The mean age of the patients was 31.36 ± 0.13 yr (CI: 31.10 to 31.61) with range 6.5 ± 0.37 to 65.57 ± 0.58 yr. Out of 23446 patients, 17437 (74.37%) were males. The most age group was people under 40 yr. The male to female ratio was around 3:1. The highest study population was 9426 and the lowest was 114. Out of 15 studies, one study was performed on children with a mean age of 6.52±3.95 yr. The lowest and highest male-to-female ratios were and in northern and southeastern Iran, respectively.

Causes of TBI
Of the 15 studies included in the meta-analysis, only two studies did not report the causes of TBI. The road traffic accidents (RTAs) (60%; 95%CI: 49% to 70%) were the major cause of TBI in Iran. (Fig. 2) Falling (20%; 95%CI: 16% to 26%) was the second major cause of TBI (Fig. 3). Other causes (8%; 95% CI: 4% to 13%) (Fig. 4), and assault (7.4%; 95% CI: 4% to 11.9%) (Fig. 5) were the third and fourth leading cause of TBI, respectively.

Table 3: Assessment of Certainty of Evidence Using the GRADE Approach

<table>
<thead>
<tr>
<th>Certainty assessment</th>
<th>Effect</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of studies</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
</tr>
<tr>
<td>Mortality rate</td>
<td>Observational</td>
<td>Not serious</td>
</tr>
<tr>
<td>Road traffic accident</td>
<td>Observational</td>
<td>Not serious</td>
</tr>
<tr>
<td>Falls</td>
<td>Observational</td>
<td>Not serious</td>
</tr>
<tr>
<td>Assaults</td>
<td>Observational</td>
<td>Not serious</td>
</tr>
<tr>
<td>Other causes of TBI</td>
<td>Observational</td>
<td>Not serious</td>
</tr>
</tbody>
</table>
Study name | Statistics for each study | Event rate and 95% CI
--- | --- | ---
Ahadi 2018 | 0.744 | 0.730 - 0.758 | 0.000
Badebarin 2021 | 0.553 | 0.461 - 0.641 | 0.262
Hejini Nejad 2015 | 0.708 | 0.655 - 0.755 | 0.000
Kasmaei 2015 | 0.605 | 0.574 - 0.635 | 0.000
Khalili 2016 | 0.621 | 0.559 - 0.679 | 0.000
Vafaee 2012 | 0.711 | 0.697 - 0.723 | 0.000
Ziaeirad 2018 | 0.794 | 0.741 - 0.838 | 0.000
Saatian 2017 | 0.399 | 0.389 - 0.409 | 0.000
Giani 2017 | 0.866 | 0.817 - 0.904 | 0.000
Farzaneh 2017 | 0.417 | 0.351 - 0.485 | 0.018
Sharbafshaeer 2021 | 0.712 | 0.669 - 0.753 | 0.000
Hosseinejad 2019 | 0.041 | 0.017 - 0.095 | 0.000
Rezaei 2015 | 0.611 | 0.539 - 0.678 | 0.003

Fig. 2: Forest plot of RTAs of TBI

### Study name	Statistics for each study	Event rate and 95% CI
Ahadi 2018 | 0.161 | 0.150 - 0.173 | 0.000
Badebarin 2021 | 0.307 | 0.297 - 0.316 | 0.000
Farzaneh 2017 | 0.380 | 0.350 - 0.411 | 0.000
Giani 2017 | 0.153 | 0.114 - 0.204 | 0.000
Hejini Nejad 2015 | 0.109 | 0.075 - 0.155 | 0.000
Hosseinejad 2019 | 0.184 | 0.134 - 0.246 | 0.000
Kasmaei 2015 | 0.163 | 0.152 - 0.174 | 0.000
Khalili 2016 | 0.131 | 0.096 - 0.177 | 0.000
Rezaei 2015 | 0.395 | 0.309 - 0.487 | 0.026
Saatian 2017 | 0.275 | 0.218 - 0.340 | 0.000
Sharbafshaeer 2021 | 0.067 | 0.048 - 0.095 | 0.000
Vafaee 2012 | 0.459 | 0.373 - 0.548 | 0.366
Ziaeirad 2018 | 0.167 | 0.130 - 0.212 | 0.000

Fig. 3: Forest plot of falling of TBI
Incidence of TBI

One population-based study conducted in Tehran in 2008 showed that the annual incidence rate of TBI was 15.3 to 144/100,000 populations (16). The incidence of TBI among males was higher.

Moreover, RTA was the main leading of TBI among patients suffered from TBI.

Types of head injuries

Six studies reported head injuries, with subdivisions in three studies, vertigo in one study, epi-
dural in one study, and subarachnoid having the highest incidence of head injuries. Subdural was the most common type of head injury.

Mortality rate

Out of 15 studies, 9 studies reported mortality. Four studies reported mortality by gender, in one study, mortality rate in females was higher than males. The mortality rate was 10.4\% based on the results of meta-analysis (RR = 0.1; 95\% CI: 0.05 to 0.18) (Fig. 6).

![Forest plot of mortality rate of TBI](http://ijph.tums.ac.ir)

Fig. 6: Forest plot of mortality rate of TBI

Discussion

To the best of our knowledge, this is the first systematic review and meta-analysis that provides a broad outlook on the epidemiology of TBIs in Iran.

According to the present study, the overall mean age of TBI in the Iranian population was 31.36 ± 0.13 yr which is similar to countries located in the Middle East and North Africa (31.32 yr) such as Turkey, Saudi Arabia, Egypt, Jordan, Kuwait, and Qatar (40). The similar result found in TBI in India, which the mean age of TBI was reported 32.15 yr (41). However, the mean age of patients with TBI in Iranian population was younger than countries such as China (42) and Japan (43). The findings of the present study also showed that TBI was more frequent in the males. The similar pattern were reported in different regions such as India (44), Europe (13, 45, 46), United States (1), Middle East and North Africa (47, 48), and global (49). Men were almost 4 times more likely to be hospitalized due to TBI than women. This could be partly due to the greater population at risk and the fact that males have more cars compared to females (50).

Our results demonstrated that RTAs and falling were the most commonly reported causes of TBI. A similar pattern was observed in other regions of the world as well (44-47). In accordance with our findings, the most common causes of TBI in developing and developed countries are motor vehicles and falling, respectively (51). However, falling and road traffic accidents were the main causes of TBI, respectively (13). Difference between these results can be attributable to age, socioeconomic factors, geographic region, and income level (52). Based on the literature,
improving road conditions, increasing driving culture, interaction between drivers and pedestrians, and intellectual transport system can be considered by planners to reduce RTAs, main leading of TBIs, in Iran (27, 53).

Our meta-analysis findings showed that the mortality rate of TBI was 10.4%. This finding is in line with a systematic review conducted on Middle East countries in which the mortality rate of TBI was reported 10% (47). A meta-analysis of TBI in Middle East and North Africa region in which the mortality rate due to TBI was 12.5%, the fairly high rates in study of Al-Hajj may be partly attributed to the military conflicts in Syria, Iraq, Afghanistan and Lebanon countries (48). When comparing our results to El-Menyar and Al-Hajj studies, a similar pattern of results was obtained in according Middle East region. Factors such as the long distance to the nearest neurosurgery center, the lack of efficient medical equipment and teams of neurosurgeons, severe head injury, delayed admission to hospital, and the unavailability of specialized hospitals can impact on increased mortality rate (54, 55). Other risk factors related-mortality rates in patients with TBI are including age, gender, severe TBI, CT findings, Glasgow coma scale, pupil examination, and the presence of thoracic trauma at admission, and geographic region (56, 57). Another explanation of higher mortality rate due to TBI in Iran is that TBIs are higher in low- and middle-income countries compared with developed countries (52, 58, 59). The inadequate access to healthcare services, Socio-cultural factors, and the high number of motorcyclists are among the causes of the difference in mortality rates (58, 60). Iran is among the leading countries in terms of the highest mortality rates of RTAs in the world (61). In Iran, head injuries are the leading cause of death in road accidents in Iran (62-64). Recently, in Iran, the risk of death in road accidents in men was 1.66 times higher than in women, and with each year of age, this risk increases by 1% (65). Gender is a risk factor in the TBI-related mortality rate. Therefore, the male gender can be considered as a risk factor for TBI. There is a relationship between age, gender, and geographic variation with increased mortality due to TBI (66). One of the best strategies that health care system should consider to reduce the mortality rate caused by TBIs is to improve the quality and speed of services in pre-hospital and emergency departments (27).

Several limitations must be noted when interpreting the results. First, the main limitation of the present study naturally was that incidence and prevalence rates did not report in included studies. Second, a small number of studies reported the mortality rate and types of injuries in patients with TBI. Finally, most studies were conducted in Tehran, the capital of Iran, which can affect the generalizability of our findings.

Conclusion

Age, male and RTAs are most important risk factors for TBIs in Iran. Furthermore, the mortality rate due to TBI in Iranian population was similar to developing countries. Appropriate preventative and control strategies for TBI in Iran should focus on males, RTAs, and the age group under 40 yr. These findings can be helpful in research, health care management, and policymaking at the national level in Iran to consider the cost-effectiveness strategies. Further research should focus on the causes and patterns of TBIs, and mortality rate by sex, age groups, and setting.

Journalism Ethics considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgements

We are thankful to the authors of the studies included in this systematic review and meta-analysis.
Funding Sources

None

Data availability statement information

The data that support the findings of this study are openly available in (10, 23, 27-39).

Conflict of interests

The authors have no conflicts of interest to declare.

References

Middle-East and North-Africa (MENA) Region: A systematic review and meta-analysis. Bull Emerg Trauma, 6(2): 75–89.

