Iran J Public Health, Vol. 47, No.3, Mar 2018, pp.317-326

Review Article

Prevalence of Drug-resistant *Klebsiella pneumoniae* in Iran: A Review Article

Mohsen HEIDARY¹, Mohammad Javad NASIRI², *Hossein DABIRI², Samira TARASHI³

1. Dept. of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2. Dept. of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3. Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran

*Corresponding Author: Email: hodabiri@gmail.com

(Received 18 Apr 2017; accepted 09 Sep 2017)

Abstract

Background: The infections caused by drug resistant strains of *Klebsiella pneumoniae* are becoming an important health problem worldwide. There are several reports on antimicrobial resistant status of *K. pneumoniae* in Iran. However, a comprehensive analysis on drug-resistant *K. pneumoniae* from different parts of Iran has not yet been performed.

Methods: The searches were done according to several English and Persian databases including PubMed, Scopus, Iranmedex, and SID to identify studies addressing antibiotic resistant *K. pneumoniae* in Iran from Jan 1998 to Nov 2014. Comprehensive Meta-Analysis (V2.2, Biostat) software was used to analyze the data.

Results: The incidence rate of imipenem and ceftazidime resistance in *K. pneumoniae* isolates was 3.2% (95% confidence interval [CI], 1.5-6.5) and 55.7% (95% CI, 46.9-64.1), respectively. The highest rate of resistance in isolates of *K. pneumoniae* was seen against ampicillin (82.2%), aztreonam (55.4%) and nitrofurantoin (54.5%). **Conclusion:** There is a relatively high prevalence of drug resistant *K. pneumoniae* isolates in Iran. Thus, a high degree of awareness among physicians and microbiologists, active infection control committee, appropriate antimicrobial therapy, improvement of hygiene condition and monitoring of drug resistant isolates are urgently

needed in order to better control the emergence and spread of drug-resistant *K. pneumoniae* isolates in hospital settings.

Keywords: Klebsiella pneumoniae, Drug resistance, Iran

Introduction

Klebsiella pneumoniae is an important causative agent of hospital-acquired infections, including severe pneumonia, urinary tract infection as well as septicemia and wound infections (1, 2). This bacterium can survive in hospitals, persist on environmental surface and colonize different parts of human body. Therefore, transmission of this opportunistic pathogen can easily occur among patients via the hands of healthcare personnel. Furthermore, the increased use of antibiotics and persistent exposure of *K. pneumoniae* to a number of antimicrobial agents, facilitating the emergence of multidrug-resistant strains, which has further intensified the infection control strategies in many health care settings (3).

The most important resistant isolates of K. *pneumoniae* are carbapenem and cephalosporin resistant strains (4). These strains can cause serious infections in immunocompromised patients, in association with prolonged hospital, stays, limited therapeutic options and increased mortality rates, ranging from 12% to as high as 72%, depending on the study population (5-9). In these regards, a reliable estimate of the extent of drug resistant isolates of *K. pneumoniae* is needed for the programmatic management of drug resistant strains within the context of national infection control programs.

This study was designed to determine the prevalence of drug resistant strains of *K. pneumoniae* in Iran according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (10, 11).

Methods

Search strategies

We conducted the search using PubMed, Web of Science, Cochrane library and Scopus for all studies addressing the prevalence of drug resistant strains of *K. pneumoniae* in Iran, from Jan 1998 to Nov 2014. The applied keywords include *Klebsiella, Klebsiella pneumoniae*, antibiotic resistance, antibiotic susceptibility, and Iran. Iranian databases including Iranmedex and Scientific Information Database (SID) were also searched (with Persian keywords).

Inclusion and exclusion criteria

We considered all the original articles about the incidence rate of drug resistant strains of *K. pneumoniae* from hospital-acquired infections in Iran. These articles should reference to the standard method, which recommended by clinical and laboratory standards Institute (CLSI) for drug susceptibility testing of *K. pneumoniae* against; carbapenems, cephalosporins and the other most used antimicrobial agents. Due to the following reasons, some studies were excluded from our analysis. Articles have focused only on community acquired *K. pneumoniae* or focused only on *non-K. pneumoniae* stains, and studies not used CLSI recommended drug susceptibility testing methods. Furthermore, case reports, meta-

analyses or systematic reviews, letters to editor, review articles, non-English or Persian studies, and duplicate publication, were also excluded.

Data extraction and definitions

The extracted data in current study include the first author's name, the publication time, year of study, number of samples, and prevalence of drug resistant strains of *K. pneumoniae*. Two authors extracted data from all of the included studies independently and a third investigator reviewed results.

Statistical analysis

The comprehensive meta-analysis software (ver. 2.0) was used to analyse the data. Because of the heterogeneity between studies, random effects models were used and tested with the Cochrane Q test. Moreover, Egger weighted regression and Begg rank correlation tests were performed to assess possible publication bias.

Results

Initially, 1353 articles were collected (Fig. 1). However, in a secondary screening, 1308 of them were excluded according to duplication, title, and abstract evaluation, and full-text of 45 papers was evaluated. Finally, 27 articles describing the prevalence of the ceftazidime- and/or imipenem- resistant strains of K. pneumoniae were selected for meta-analysis (Table 1). In all included studies, antimicrobial susceptibility testing had been performed using disc diffusion method as recommended by CLSI guidelines. Most of the studies were done in Tehran (n=11) compared with Isfahan (n=4), Fars (n=3), East Azerbaijan (n=2), Semnan (n=2), Hamadan (n=2), K. Boyer Ahmad (n=1), West Azerbaijan (n=1) and Kerman (n=1). Fig. 2 shows the distribution of drugresistant strains of K. pneumoniae in different regions of Iran. The prevalence of imipenem and ceftazidime resistance was found to be 3.2% (95% CI, 1.5-6.5) and 55.7% (95% CI, 46.9-64.1), respectively (Table 2). Fig. 3 and 4 show the forest plot of the Meta-analysis of imipenem and ceftazidime resistant K. pneumoniae.

				Total number	Isolates	Number of	Resistance to
References	Published	Enroll-	Province	of samples	of	Ceftazidime	Imipenem
	time	ment			Klebsiella penomoniae	(%)	(%)
		time					
12	2007	2002-2005	Tehran	200	33	24(73)	-
13	2005	2003-2004	Tehran	115	100	28(28)	0(0)
14	2011	2006-2009	Tehran	250	250	95(38)	3(1)
15	2010	2007-2008	Tehran	101	25	23(92)	2(8)
16	2008	2007-2008	Tehran	164	40	20(50)	-
17	2009	2007-2008	Tehran	65	30	23(77)	0(0%)
18	2010	2008-2009	Tehran	81	62	53(85)	0(0%)
19	2014	2009-2010	Tehran	50	30	26(87)	-
20	2013	2009-2011	Tehran	360	45	34(76)	3(7)
21	2014	2011-2012	Tehran	83	83	46(55)	20(24)
22	2012	2011-2012	Tehran	120	45	21(47)	-
23	2011	2009-2010	Isfahan	211	30	7(23)	-
24	2014	2013-2014	Isfahan	123	15	-	0(0)
25	2011	2009-2010	Isfahan	167	36	23(64)	0(0)
26	2013	2010-2011	Isfahan	61	61	30(49)	-
27	2013	2009-2010	Fars	571	60	28(47)	1(2)
28	2012	2009-2010	Fars	328	144	-	12(8)
29	2013	2009-2010	Fars	60	60	28(47)	1(2)
30	2008	2007-2008	East	88	47	43(91)	0(0)
			Azarbaijan				
31	2010	2008-2009	East	72	72	58(81)	-
			Azarbaijan			. ,	
32	2010	2007-2008	Semnan	310	76	18(24)	-
33	2009	2007-2008	Semnan	382	107	21(20)	-
34	2014	2007-2008	Kerman	413	75	52(69)	2(3)
35	2005	1999-2001	West	251	19	3(16)	-
			Azarbaijan				
36	2013	2010-2012	Kohgiluyeh	202	180	93(52)	-
			and			~ /	
			Boyer Ahmad				
37	2013	2011-2012	Hamedan	120	120	44(37)	0(0)
38	2009	2004-2006	Hamedan	209	30	-	2(7)

Table 1: Included studies after full-text evaluation

Table 2: The prevalence of imipenem and ceftazidime resistance among Klebsiella pneumoniae

Subgroups	No. of study	Prevalence of drug resistance (95% CI)	ilence of n/N* resistance CI)		encity Test	Egger's cation l	Egger's test for publi- cation bias		
				I² (%)	<i>P</i> -value	t	<i>P</i> -value		
Overall effects of resistant to imipenem	16	3.2 (1.5-6.5)	46/1182	75.9	<.001	5.1	0.00016		
Overall effects of resistant to ceftazidime	24	55.7 (46.9-64.1)	841/1686	92.2	<.001	2.4	0.02454		

CI, confidence interval; n, number of events (drug resistance); N, total number of Klebsiella pneumoniae from the included studies

Fig. 1: Summary of the literature search and study selection

Some evidence for publication bias for imipenem and ceftazidime was observed (P<0.05 for Begg rank correlation analysis; P<0.05 for Egger weighted regression analysis) (Fig. 5, 6). The resistance of *K. pneumoniae* to other important antimicrobial agents is shown in Table 3.

Fig. 2: Distribution of drug-resistant Klebsiella pneumoniae in different regions of Iran

Iran J Public Health, Vol. 47, No.3, Mar 2018, pp. 317-326

Refer-	Enrollment	Case	С	ar-	(Cephal	osporii	15	Amin	nogly-	Fluoroquin-	Mono-	Peni-	Mac-	Cotri-
ences	time	num	bap	enem					cos	ides	olones	bactam	cillins	rolid	moxazole
		ber	IM	ME	CA	СТ	CR	СР	AM	GM	CIP	AZT	AMP	NF	TMP/SX
			Р	Μ	\mathbb{Z}^3	X^4	O^5	Μ	\mathbf{K}^7	8	9	10	11	12	Т
			1	2				6							13
12	2002-2005	33	-	-	24	19	19	-	14	21	15	26	-	14	-
13	2003-2004	100	0	-	28	-	20	-	9	30	20	-	-	31	-
14	2006-2009	250	3	-	95	91	86	100	53	82	85	-	-	-	-
15	2007-2008	25	2	-	23	22	23	22	24	-	17	-	24	13	18
16	2007-2008	40	-	-	20	-	19	-	8	14	12	-	40	16	20
17	2007-2008	30	0	-	23	6	20	25	20	16	18	-	30	18	18
18	2008-2009	62	0	-	53	56	47	44	14	30	32	59	-	16	47
19	2009-2010	30	-	-	26	25	-	-	16	17	26	-	30	-	-
20	2009-2011	45	3	13	34	37	-	33	11	-	32	32	-	-	38
21	2011-2012	83	20	20	46	50	49	30	12	29	46	49	65	-	-
22	2011-2012	45	-	-	21	-	-	-	-	-	43	-	-	23	31
23	2009-2010	30	-	-	7	5	-	-	0	7	6	-	21	10	8
24	2013-2014	15	0	0	-	15	-	15	8	-	12	-	15	10	-
25	2009-2010	36	0	-	23	21	-	22	12	-	13	-	33	7	28
26	2010-2011	61	-	-	30	49	37	-	-	-	-	-	-	-	-
27	2009-2010	60	1	-	28	34	-	29	5	8	13	19	60	-	26
28	2009-2010	144	12	-	-	-	-	-	61	65	42	-	23	-	43
29	2009-2010	60	1	-	28	34	-	29	5	8	13	19	60	-	26
30	2007-2008	47	0	-	43	42	44	39	5	-	-	41	-	-	-
31	2008-2009	72	-	-	58	-	-	-	31	53	31	-	-	68	69
32	2007-2008	76	-	-	18	19	-	-	-	19	35	-	73	-	41
33	2007-2008	107	-	-	21	24	-	-	-	19	21	-	97	-	27
34	2007-2008	75	2	-	52	25	-	27	-	48	21	-	-	-	35
35	1999-2001	19	-	-	3	-	-	-	0	5	3	-	14	-	3
36	2010-2012	180	-	41	93	87	81	-	40	65	31	83	-	138	108
37	2011-2012	120	0	-	44	50	52	30	-	32	20	52	-	-	49
38	2004-2006	30	2	-	-	-	3	3	11	13	7	19	60	-	-
Mean	-	-	46	74	841	711	500	448	359	581	613	399	645	364	635
Rate			(3.2)	(18.9)	(55.7)	(49.9)	(47.1)	(47.8)	(25.8)	(36.3)	(34.8)	(55.4)	(82.2)	(54.5)	(51.8)

Table 3: Drug resistance status in Klebsiella pneomoniae

Abbreviations: 1. IMP, imipenem; 2. MEM, meropenem; 3.CAZ, ceftazidime; 4. CTX, cefotaxime; 5. CRO, ceftrixone; 6. CPM, cefepime; 7. AMK, amikacin; 8. GM, gentamycin; 9.CIP, ciprofloxacin; 10. AZT, aztreonam; 11. AMP, ampicillin; 12. NF, nitrofurantoin; 13.SXT/TMP, trimethoprim/sulfamethoxazole

Study name		Statisti	cs for ea	ch study			Event	rate and	95% CI	
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Ghasemi	0.017	0.002	0.109	4.043-	0.000	1	- T	-	- T	
Mahouf	0.067	0.017	0.231	3.606-	0.000			-		
Mansouri	0.027	0.007	0.100	5.019-	0.000					
Shahcheraghi	0.067	0.022	0.187	4.416-	0.000			-		
Feizabadi	0.008	0.000	0.115	3.401-	0.001			-		
Soltani	0.031	0.002	0.350	2.390-	0.017			-		
Shoeib	0.012	0.004	0.037	7.594-	0.000					
Jalalpoor	0.014	0.001	0.182	3.013-	0.003			-		
Pirouzi	0.083	0.048	0.141	7.953-	0.000					
Archin	0.017	0.002	0.109	4.043-	0.000					
Jeddi	0.010	0.001	0.146	3.203-	0.001			-		
Mehr	0.016	0.001	0.211	2.883-	0.004					
Mehr	0.080	0.020	0.269	3.313-	0.001			-		
Etemadi	0.005	0.000	0.074	3.741-	0.000					
Mashouf	0.004	0.000	0.063	3.870-	0.000					
Hashemi	0.241	0.161	0.344	4.471-	0.000				-	
	0.032	0.015	0.065	9.020-	0.000				2	
						1 00	0.50	0.00	0.50	1

Meta Analysis

Fig. 3: Forest plot of the meta-analysis on imipenem resistance. CI, confidence interval

Heidary et al.: Prevalence of Drug-resistant Klebsiella pneumoniae ...

Study name		Statist	ics for ea	ch study			Even	t rate and 9	5% CI	
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Feizabadi	0.727	0.553	0.852	2.509	0.012	1	1	1	1 -	- 1
Etemadi	0.280	0.201	0.376	-4.241	0.000			- 1 - 3	-	S
Shoeib	0.380	0.322	0.442	-3.757	0.000					
Mehr	0.920	0.731	0.980	3.313	0.001				- T	
Aminzadeh	0.500	0.350	0.650	0.000	1.000					
Mehr	0.767	0.585	0.884	2.756	0.006				T -	-
Feizabadi	0.855	0.744	0.923	4.918	0.000					-
Moohaddam	0.867	0.694	0.949	3.485	0.000					
Shahcheraghi	0.756	0.610	0.859	3.253	0.001					-
Hashemi	0.554	0.446	0.657	0.986	0.324					- 1
Rajabi	0.467	0.328	0.611	-0.447	0.655				-	I
lalalpoor	0.233	0.116	0.415	-2.756	0.006			-	- 1	I
lalalpoor	0.639	0.473	0.777	1.644	0.100			98		- 1
Karami	0.492	0.369	0.615	-0.128	0.894				-	
Archin	0.467	0.345	0.592	-0.516	0.606				_	I
Shasemi	0.467	0.345	0.592	-0.516	0.606				-	I
leddi	0.915	0.794	0.908	4.543	0.000				-	-
anoarizadeh	0.806	0.698	0.881	4.773	0.000					-
rajan	0.237	0.155	0.345	-4.337	0.000				- I	- 1
rajian	0.196	0.132	0.282	-5.792	0.000					. 1
Mansouri	0.693	0.581	0.787	3 258	0.001	1			-	F L
Allpourfard	0.158	0.052	0.392	-2.661	0.008	1		-		8
Hashemizade	0.517	0.444	0.589	0.447	0.655			-	÷.	I
Mashouf	0.367	0.285	0.456	-2.885	0.004	1			- ₽ Г	- 1
Concernent (0.557	0.469	0.641	1.268	0.205	1			-	I
						1.00	0.50	0.00	0.60	10
						-1.00	-0.50	0.00	0.50	1.04

Fig. 4: Forest plot of the meta-analysis on ceftazidime resistance. CI, confidence interval

Fig. 5: Funnel plot of the meta-analysis on imipenem resistance

Fig. 6: Funnel plot of the meta-analysis on ceftazidime resistance

Discussion

The emergence and spread of carbapenem and cephalosporin resistant strains of *K. pneumoniae* are a considerable threat to public health (2). The major goal of this systematic review was to evaluate the current situation and distribution of drugresistant *K. pneumoniae* in Iran.

This analysis showed that 3.2% K. pneumoniae isolates from Iran was resistant to imipenem and 55.7% ceftazidime. Thereby to despite ceftazidime, the imipenem remains as a powerful weapon against K. pneumoniae isolates in Iran. In the current study more than half of K. pneumoniae isolates were resistant to other important antimicrobial agents such as aztreonam (55.4 %), nitrofurantoin (54.5%) and co-trimoxazole (51.8%), we highly recommend that antimicrobial test should be performed prior to any antibiotic prescription in K. pneumonia infections. Very low number of K. pneumonia population (17.8%) were sensitive to ampicillin suggesting ampicillin is not effective drug for empiric treatment of K. pneumonia infections unless we use it in combination with other relevant drugs.

The relatively high rates of drug resistant isolates of K. pneumoniae observed in this study may have several negative effects on public health issues (39). For example, this could cause difficulty in treating K. pneumoniae associated infections since fewer effective drugs are available for treating those highly drug-resistant strains. Unfortunately, these microorganisms are even showing rising rates of resistance to new expensive antibiotics subsequently considered the treatment of choice (40). This is due to the widespread use of broadspectrum antibiotics in health care settings for empiric treatment of infections. Furthermore, patients infected with these pathogens require prolonged antimicrobial therapy that has considerable implications for the individual patient and for the health care settings. Finally, infections due to these highly resistant strains are reported to be associated with higher morbidity and mortality rates (41). In Iran, 50000 people die each year because of multidrug-resistant bacterial infections and that this costs Iranian economy 2.5 million dollars annually (4).

Some important reasons for the increasing rates of drug resistant isolates in Iran include limited infection surveillance programs, the lack of communication between physicians and microbiologists, lack of standardized or accepted criteria to determine drug resistant isolates, limited laboratory facilities, and poor sanitation. Therefore, active infection control committee, appropriate antimicrobial therapy, and improvement of hygiene condition will prevent or lower the emergence of antimicrobial-resistant pathogens (42).

Current review was carried out according to provinces of Iran and the published time. Because of many hospitals and health care centers in Tehran Province, Iran, patients from other provinces come to Tehran for better treatment. Therefore, most of the studies in this analysis belonged to Tehran, where the ceftazidimeand/or imipenem- resistant strains of *K. pneumoniae* mostly reported by researchers.

Conclusion

There is a relatively high prevalence of drug resistant *K. pneumoniae* isolates in Iran. Thus, a high degree of awareness among physicians and microbiologists, active infection control committee, appropriate antimicrobial therapy, improvement of hygiene condition and monitoring of drug resistant isolates are urgently needed in order to better control the emergence and spread of drugresistant *K. pneumoniae* isolates in hospital settings.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

- Pages JM, Lavigne JP, Leflon Guibout V et al (2009). Efflux pump, the masked side of ß-Lactam resistance in *Klebsiella pneumoniae* clinical isolates. *PLoS One*, 4(3):e4817.
- Heidary M, Goudarzi H, Hashemi A et al (2016). The prevalence of genes that encode quinolone resistance in *Klebsiella pneumoniae* strains isolated from hospitalized patients during 2013-2014. *Arch Pediatr Infect Dis*, (In press).
- Heidary M, Bahramian A, Goudarzi H et al (2016). To study the association between AcrAB and Qep A efflux pumps and ciprofloxacin resistance among *Escherichia coli* and *Klebsiella pneumoniae* clinical strains. *Arak Med* Univ J, 19(4):1-0.
- World Health Organization (2014). Antimicrobial resistance: global report on surveillance. http://apps.who.int/iris/bitstream/10665/1 12642/1/9789241564748_eng.pdf?ua=1
- Vardakas KZ, Matthaiou DK, Falagas ME et al (2015). Characteristics, risk factors and outcomes of carbapenem resistant *Klebsiella pneumoniae* infections in the intensive care unit. J Infect, 70(6):592-9.
- Maatallah M, Vading M, Kabir MH et al (2014). *Klebsiella variicola* is a frequent cause of bloodstream infection in the Stockholm area, and associated with higher mortality compared to *K. pneumoniae. PLoS One*, 9(11):e113539.
- Mouloudi E, Massa E, Piperidou M et al (2014). Tigecycline for treatment of carbapenemresistant *Klehsiella pneumoniae* infections after liver transplantation in the intensive care unit: a 3-year study. *Transplant Proc*, 46(9):3219-21.
- Siddiqui NU, Qamar FN, Jurair H, Haque A (2014). Multi-drug resistant gram negative infections and use of intravenous polymyxin B in critically ill children of developing country: retrospective cohort study. *BMC Infect Dis*, 14:626.
- Matsumura Y, Tanaka M, Yamamoto M et al (2015). High prevalence of carbapenem resistance among plasmid-mediated AmpC βlactamase-producing *Klebsiella pneumoniae* during outbreaks in liver transplantation units. *Int J Antimicrob Agents*, 45(1):33-40.
- 10. Moher D, Liberati A, Tetzlaff J, Altman DG (2009). Preferred reporting items for system-

atic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med*, 151(4):264-9.

- Nasiri MJ, Dabiri H, Darban-Sarokhalil D et al (2014). Prevalence of drug-resistant tuberculosis in Iran: Systematic review and metaanalysis. *Am J Infect Control*, 42(11):1212-8.
- Feizabadi MM, Etemadi G, Rahmati M et al (2007). Antibiotic resistance patterns and genetic analysis of *Klebsiella pneumoniae* isolates from the respiratory tract. *Tanaffos*, 6(3):20-25.
- Etemadi G, Sadeghian S, Amirkhani A et al (2005). Drug resistance patterns and prevalence of extended spectrum betalactamase producers among isolates of Klebsiella *pneumonia* cultured from patients at Tehran hospitals *during* 2003-2004. *Tehran Univ Med J*, 63(7):543-50.
- Nematzadeh S, Shahcheraghi F, Feizabadi MM et al (2011). Molecular characterization of CTX-M β-lactamases among *Klebsiella pneumoniae* isolated from patients at Tehran hospitals. *Indian J Med Microbiol*, 29(3):254-7.
- Mohammadimehr M, Feizabadi M, Bahadori A (2011). Antibiotic resistance pattern of gram negative bacilli caused nosocomial infections in ICUs in khanevadeh and golestan hospital in Tehran-2007. J Army Univ, 8(4):283-90.
- Aminzadeh Z, Kashi MS, Sha'bani M (2008). Bacteriuria by extended-spectrum betalactamase-producing *Escherichia coli* and *Klebsiella pneumoniae*. Iran J Kidney Dis, 2(4):197-200.
- Mohammadimehr M, Feizabadi MM, Bahadori O et al (2009). Study of prevalence of gramnegative bacteria caused nosocomial infections in ICU in Besat hospital in Tehran and detection of their antibiotic resistance patternyear 2007. *Iran J Med Microbiol*, 3(2):47-54.
- Feizabadi MM, Delfani S, Raji N et al (2010). Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of *Klebsiella pneumoniae* at Labbafinejad Hospital, Tehran, Iran. *Mixrob Drug Resist*, 16(1):49-53.
- Moghaddam MM, Barjini KA, Ramandi MF, Amani J (2014). Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant *Klebsiella pneumoniae* and *Salmonella typhimurium* strains and its cytotoxicity on eukaryotic cells. *World J Microbiol Biotechnol*, 30(5):1533-40.

- 20. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F et al (2013). First report of New Delhi metallo-beta-lactamase-1-producing *Klebsiella pneumoniae* in Iran. *Microb Drug Resist*, 19(1):30-6.
- Hashemi A, Fallah F, Erfanimanesh S et al (2014). Detection of β-lactamases and outer membrane porins among *Klebsiella pneumoniae* strains isolated in Iran. *Scientifica*, 2014:726179.
- Rajabi Z, Akbari N, Mardane J, Soltan DM (2012). Antibiotic susceptibility of the strains isolated from blood and urinary tract infections in neonatal intensive care units of Imam Hossein Hospital. *Microb Biotechnol*, 4(12):53-9.
- Jalalpoor S, Mobasherizadeh S (2011). Frequency of ESBLs in *Escherichia coli* and *Klehsella pneumoniae* strains isolated from hospitalized and out-patients with urinary tract infection in selective centers in Esfahan (2009-2010). *Razi J Med Sci*, 18(85):7-16.
- Soltani R, Ehsanpoor M, Khorvash F, Shokri D (2014). Antimicrobial susceptibility pattern of extended-spectrum β-lactamase-producing bacteria causing nosocomial urinary tract infections in an Iranian referral teaching hospital. J Res Pharm Pract, 3(1):6-11.
- 25. Jalalpoor S (2011). Antibiotic resistant pattern in ESBLs producer *Klehsiella pneumoniae* strains isolated of hospitalized and out patients acquired urinary tract infection. J Isfahan Med Sch, 29(142): 695-705.
- Karami M, Amirmozafari N, Doudi M (2013). Effects of silver nanoparticles on ESBLproducing *Klebsiellae. Qom Univ Med Sci J*, 7(3):28-34.
- Archin T, Afzalian E, Kargar M, Ghasemi Y (2014). Molecular identification of SHV, TEM, CTX-M β-lactamases genes and antibiotics resistance pattern of *K.peneumoniae* isolates collected from ICU patients of Namazi Hospital, Shiraz, Iran. *Armaghane Danesh*, 18(10): 816-25.
- Pirouzi A, Jafari M, Kargar M et al R (2012). Molecular detection of simultaneous occurrence of antibiotic-and heavy metal-resistance in *Klebsiella pneumoniae* isolated from urinary tract infection. J Isfahan Med Sch, 30(186): 1-12
- Ghasemi Y, Archin T, Kargar M, Mohkam M (2013). A simple multiplex PCR for assessing prevalence of extended-spectrum βlactamases producing *Klebsiella pneumoniae* in

intensive care units of a referral hospital in Shiraz, Iran. Asian Pac J Trop Med, 6(9):703-8.

- Mobasher Kare Jeddi A, Nahaei M et al (2009). Molecular study of extended-spectrum betalactamase (SHVtype) in *Esherichia coli* and *Klebsiella pneumonia* isolated from medical centers of Tabriz. *Iran J Med Microbiol*, 2(3-4):9-17.
- Langari ZM, Ahangarzade RM, Aghazade M, Hasani A (2010). Comparison the prevalence of multidrug-resistant *Klebsiella pneumoniae* in adults and children with urinary tract infection. J Animal Physiol Develop, 4(1): 9-17.
- 32. Irajian G, Jazayeri Moghadas A (2010). Frequency of extended-spectrum beta lactamase positive and multidrug resistance pattern in Gram-negative urinary isolates, Semnan, Iran. *Jundishapur J Microbiol*, 3(3):107-13.
- Moghadas AJ (2009). Prevalence of extendedspectrum beta lactamase positive and multidrug resistance pattern of Escherichia coli and *Klebsiella pneumoniae* isolates, Semnan, Iran. *Iran J Microbiol*, 1(1):49-53.
- Mansouri S, Neyestanaki DK, Shokoohi M et al (2014). Characterization of AmpC, CTX-M and MBLs types of β-lactamases in clinical isolates of *Klebsiella pneumoniae* and *Escherichia coli* producing extended spectrum βlactamases in Kerman, Iran. Jundishapur J Microbiol, 7(2): e8756.
- Rahbar M, Gra Agaji R, Hashemi S (2005). Nosocomial blood stream infections in Imam Khomeini Hospital, Urmia, Islamic Republic of Iran, 1999-2001. *East Mediterr Health J*, 11(3):478-84.
- Hashemizadeh FS, Zamanzad B, Jahandideh S et al (2013). Identification of KPC-producing *Klebsiella pneumoniae* in clinical samples in Iran. *Yafteh*, 15(1):105-14.
- 37. Mashouf RY, Alijani P, Saidijam M et al (2013). Study of antibiotic resistance pattern and phenotypic detection of ESBLs in *Klebsiella pneumoniae* strains isolated from clinical samples and determination of minimum inhibitory concentrations of imipenem and ceftazidim antibiotics. *Sci J Hamadan Univ Med Sci*, 20(4): 295-302.
- Mashouf RY, Babalhavaeji H, Yousef J (2009). Urinary tract infections: bacteriology and antibiotic resistance patterns. *Indian Pediatr*, 46(7):617-20.

- Van der Steen M, Leenstra T, Kluytmans JA et al (2015). Trends in expanded-spectrum cephalosporin-resistant *Escherichia coli* and *Klebsiella pneumoniae* among dutch clinical isolates, from 2008 to 2012. *PLoS One*,10(9):e0138088.
- 40. Ji S, Lv F, Du X et al (2015). Cefepime combined with amoxicillin/clavulanic acid: a new choice for the KPC-producing K. pneumoniae infection. *Int J Infect Dis*, 38:108-14.
- Joseph NM, Bhanupriya B, Shewade DG, Harish BN (2015). Relationship between antimicrobial consumption and the incidence of antimicrobial resistance in *Escherichia coli* and *Klebsiella pneumoniae* isolates. J Clin Diagn Res, 9(2):DC08-12.
- 42. Zhang Y, Ma Y, Ye L et al (2014). Prevalence and antimicrobial susceptibility of hypervirulent *Klebsiella pneumoniae* isolates in China. *Clin Infect Dis*, 58(10):1493-94.