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Introduction 
 

Medical image registration is one of the most im-
portant and challenging research in the modern 
medical image analysis field. It aims to align two 
images which are captured from different de-
vice/time into the same coordinate system. “It 
has many potential and important applications in 
clinical diagnosis, such as fusion of computer 
tomography (CT) and magnetic resonance imag-
ing (MRI) data to obtain more complete infor-
mation about the patient, monitoring tumor 
growth, treatment verification, and comparison 
of the patient’s data with anatomical atlases” (1). 
From the view of the image transformation, med-
ical image registration can be classified into rigid 

registration and non-rigid registration. In the past 
few years, a number of excellent rigid image reg-
istration methods were proposed and widely ap-
plied, such as the cross-correlation method (2), 
maximization of mutual information method (3) 
and normalized mutual information method (4). 
These methods are extended or integrated, and 
gradually applied to solve the non-rigid image 
registration problem (5-7). Compared to the rigid 
image registration task, the non-rigid image regis-
tration task faces much more challenges due to 
its high degree of freedom and inherent require-
ment of smoothness in the deformation field. 
The accuracy, robustness and speed of these al-
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gorithms are required to be further improved for 
clinical applications (8-9). 
The non-rigid medical image registration algo-
rithm naturally depends on the geometric defor-
mation model and the similarity measure criteri-
on. The geometric deformation models can be 
classified into two main categories: i) physics-
based models such as the elastic body models 
(10-11), the optical flow models (12) and the dif-
fusion models (13); and ii) interpolation-based 
models such as free-form deformations (14-15). 
Christensen et al. (10) proposed an approach to 
tackle large deformations with multiple linear 
elastic models which represent a series of small 
deformations. Guyader et al. (11) proposed an 
approach that combines segmentation and regis-
tration that is based on nonlinear elasticity. Lu et 
al. (12) proposed a registration method based on 
the optical flow model for non-rigid heart imag-
es. This algorithm includes two steps, i.e., coarse 
registration and precise registration, to improve 
both of the registration accuracy and the conver-
gence speed. Thirion (13) regarded the image reg-
istration as a diffusion process. This algorithm is 
actually an iterative process between estimation 
of the pixel displacements and the update of the 
transformation. In each iteration, the movement 
of any pixel is decided by a matching process 
based on the Sum of Squared Differences (SSD) 
criterion. For the above registration algorithms 
based on the physical models, it is difficult to 
construct a reasonable physical model that can 
simulate the complex tissue deformations be-
tween the two input images. Rueckert et al. (14) 
proposed a local deformation model for non-
rigid registration on breast MR images. This 
model was described by the so called Free-Form 
Deformation (FFD) based on B-splines, and it 
employed the normalized mutual information 
(NMI) as the similarity function. Since the degree 
of freedom of the local deformation model is de-
termined by the number of control points, it is 
important to decide whether a sparse or dense set 
of control points should be used. However, both 
sparse and dense sets have limitations. If a sparse 
set of control points is used, the movements of 
the control points will not well represent compli-

cated deformations. If a dense set of control 
points is used, the optimization can be computa-
tionally inefficient. In order to tackle these short-
comings, some researchers proposed some com-
promise methods. For example, Shi et al. (15) 
proposed a multi-level B-spline model in which 
only a sparse subset of the control points is active 
to balance speed and accuracy. 
In addition to the geometric deformation model 
itself, extraction of the robust and precise feature 
correspondences is also very important. It is an 
essential step to estimate the geometric defor-
mation model in many registration methods. 
However, it is often affected by image noise, fea-
ture outliers and local deformations. In the past 
decade, a number of methods were proposed to 
solve the robust feature matching problem. 
Among them, one kind of fuzzy correspondence 
methods, such as softassign methods (16) and 
relaxation labeling methods (17) have been de-
veloped, in which the binary constrains of the 
correspondences are relaxed to become a fuzzy 
correspondence during the optimization process. 
Some researchers combined the iconic feature 
and the geometric feature for correspondence 
searching and outlier discarding (18-19). Howev-
er, most of these approaches have limited capa-
bility in handling outliers caused by feature ex-
traction errors or large deformations. 
This paper proposes an efficient coarse-to-fine 
non-rigid medical image registration algorithm 
based on a multi-level deformable model.  
 

Materials and Methods 
 

The study was carried out according to the Hel-
sinki Declaration and approved by the ethical 
committee of Chinese Academy of Medical Sci-
ences. The need for informed consent was 
waived, because the data sets used in this study 
downloaded from some open web sites. 
 

Algorithm Overview 
Fig. 1 shows the flow chart of our algorithm, 
which contains three steps. The left part of Fig. 1 
(a) shows the two input images to be registered, 
where the top one is called the reference image 
(which will be fixed during the registration step) 
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and the bottom one is called the float image 
(which will be transformed by the registration 
process). The right part of (a) shows the differ-
ence of the two input images. (e) shows the dif-
ference between the fixed reference image and 
the registered float image after the proposed 
coarse-to-fine registration algorithm. Comparing 

(e) and the right part of (a), it can be seen that 
most pixels of the two input images are already 
aligned accurately. (b), (c) and (d) are the inter-
mediate results corresponding to the three steps 
of the proposed coarse-to-fine registration algo-
rithm, and will be described in detail in the fol-
lowing text. 

  

 
 

Fig. 1:  The flow chart of our algorithm 

 
[1] Feature correspondence detection based on 
global homography model. The robust and accu-
rate feature correspondence detection between 
the reference image and float image plays an im-
portant role in image registration (shown in Fig 1 
(b)). In this paper, we used the SIFT (Scale-
invariant feature transform) (20-21) algorithm to 
detect sparse feature correspondences in the two 
images. Although SIFT can be invariant to uni-
form scaling, orientation, and partially invariant 
to affine distortion and illumination changes, it 
inevitably produces outliers due to feature extrac-
tion errors or large deformations. To tackle this 
issue, an improved robust RANSAC algorithm 
for simultaneous removal of outliers and estima-
tion of the global level transformation model is 
applied. [2] Coarse registration based on local-
mesh level homography model 
Since the global transformation model cannot 
precisely simulate the local deformations of non-
rigid tissue, a number of local deformable models 
corresponding to a series of uniform grid mesh 
are robustly estimated. In this step, the local de-
formation model is estimated by a local homog-
raphy with shape-preserving constraints. The lo-
cal deformation mesh is shown in Fig 1 (c). Then, 
the coarse registration based on the local mesh-
level homography model is performed. It can 
greatly improve the convergence speed and preci-

sion of the following fine registration step.[3] Fi-
ne registration based on B-spline FFD model. 
Although the above local homography transfor-
mation model can effectively simulate the defor-
mations to some extent, its ability is limited for 
the images with very complex deformations be-
cause the model reduces degree of freedom by 
introducing a shape-preserving constraint. To 
tackle the complex deformations, a fine registra-
tion step is further applied. In this step, a B-
spline FFD model is constructed by integrating 
the normalized mutual information (NMI) gradi-
ent to acquire more accurate registration results 
in this step (shown in Fig. 1 (d)). 
 
Estimation of the Global Level Homography 
Model 
The global level transformation model is de-

scribed by a homography , a  matrix. 

Suppose  is the i-th matched SIFT feature 
correspondence between the reference image R 

and the float image F,  can be estimated by 
four pairs of correspondences: 

                                               [1] 

where  is a homogeneous coordinate, i.e., 

. 
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In order to enhance the robustness and accuracy 
of the feature correspondences, the robust ORSA 
(Optimized Random Sample Consensus, i.e., Op-
timized RANSAC) algorithm (23) is applied to 
estimate the parameters of the global homogra-

phy model  and eliminate the outliers simul-
taneously. The average residual error  of the 
correspondences is used to distinguish the inliers 
and outliers in the process of the estimation (Fig 
2).    
 

 
 

Fig. 2:  Residual error terms for global homography 
estimation 

 

  [2] 

where  is the Euclidean distance be-

tween the locations of point  and transformed 

point . 
After performing the ORSA algorithm, a global 

transformation model  and an inlier set (with 

a relatively large error threshold ) are obtained. 
In order to further eliminate outliers, the ORSA 

algorithm is further applied on the  sub-
images of the reference image R with a relatively 

small error threshold . The estimated global 

homography matrix  and the inliers will be 
used in the following local mesh-level defor-
mation step. 
 
Coarse Registration based on Local Mesh-
level Deformable Model 
Estimation of the Local Mesh-level Deform-
able Model 
The reference image R is divided into a number 
of regular square cells (called meshes). Each grid 

cell has  (  in our experiments) pixels. 

As shown in Fig 3, the grid cell  is enclosed 

by 4 vertices , and its corre-

sponding cell  in the float image F is 

. Suppose  is one feature 

point in cell , where  and 

 is the coordinates of the cell. The mo-

tion model from  to  can be represented 

by a local homography , i.e., there exists the 
following linear equation: 

                                                       
[3] 
 

 
 

Fig. 3:  Local deformable model in the corresponding 
grid cell of the reference image R and the float image 

F 
 

Since the local model  can be linearly solved 
with the 4 vertices of the grid cell, so the estima-
tion of the local homography model becomes the 

estimation of the 4 vertices . 

Suppose  is the i-th feature correspond-
ence between the reference image R and float 
image F, then take into account the global 

homography model  that estimated in the first 

step, we use  to replace  in the estimation 
of the local homography model, because after 

global homography transformation, 

 

 is 

more close to  than the original point . The 

 and  are separately located in the grid cell 

 and . The feature point  can be repre-
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sented by a 2D bilinear interpolation of the cell 

, i.e., , where 

 

is the interpolation 

weight, and there is . 

It is supposed that the corresponding point 

 has the same weight  in the cell  where it is 
located. Then the data term used to estimate all 

cell’s vertices  in the float image is defined as: 

                                   [4] 
Although this flexible motion model can well de-
scribe the transformation between the local cor-
responding cells, it is difficult to estimate it be-
cause there are no sufficient feature correspond-
ences in each cell. In order to address this chal-
lenge, a similarity constraint term is introduced to 
limit the degrees of freedom of the motion mod-
el: 

      [5] 

where  are three vertices of one grid in the 

float image,  is a scale ratio 
computed from the corresponding three vertices 

in the reference image, and  is a rotation ma-
trix used to guarantee the right angle of vector 

 and . This constraint term requires the 
triangle formed by three neighboring vertices 

 to follow a similarity transformation. 
The data term and constraint term are linearly 
combined to obtain the final energy function: 

                                       [6] 

where  is a weight to control the contribution 
of the two terms. Since the energy function is 

quadratic, all cell’s vertices  can be solved by a 

sparse linear solver. Then the local model  
will be estimated by Eq.(3). Note that the final 

local homography  in each cell is determined 

by . 
The data term in the above mentioned energy 
function mainly considers the position infor-

mation of the feature correspondences. In order 
to further improve the robustness of the local 
homography estimation algorithm, a new similari-
ty measure with stronger constraints by employ-
ing direction and distance information (See 
Sec.4.2) is proposed for adaptively determining 

the weight  of the constraint term in Eq.(6). 

The weight  is equally discretized into 10 values 
between 0.3 and 3. Taking the center point of 
each grid as the center of the support window in 
the reference image, the corresponding support 
window in the float image can be determined by 
the estimated local homographies. Then the similar-
ity is calculated between the corresponding win-
dows, and the optimal local homographies are se-
lected as those with maximum similarity measure. 

Once the optimal local homographies  are 
determined, they are used for coarse registration 
by transforming and interpolating the float image 

to obtain the coarsely registered image . It is 
worth noting that after the transformation, the 
pixel coordinates are mapped to the non-integer 
coordinates, so the pixel interpolation is the key 
step in the registration. In this paper, we use the 
partial volume interpolation method (PVI) (24). 
PVI is one kind of interpolation method that is 
based on the joint histogram, and can obtain a 
more smooth objective function curve. 
 
A New Similarity Measure based on NCC 
The new similarity measure is a weighted normal-
ized cross correlation (Weighted NCC) aiming to 
select the optimal local homographies. As we 
know, NCC is a simple but effective similarity 
measure. However, it only uses the gray pixel 
values to measure the similarity of the corre-
sponding local windows. In fact, direction of the 
pixel gradient is also valuable and powerful in-
formation for similarity measurement. In this pa-
per, a new similarity measure is proposed by as-
signing a weight for each pixel except the center 
point in a support window. It is defined as: 

    
[7] 
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where  and  are the gray values at point 

 and 
 
in the image R and F respectively.  

and 

 

are the mean gray pixel values in the 

given  windows centered at  and 
.
 In 

Eq.(7), the weights  and  are re-
spectively determined by the product of two 
components of direction and distance, i.e. 

 and . The fol-

lowing section takes weight  as an exam-
ple to introduce the meaning of the two compo-
nents. 
The direction component is computed as: 

                    [8] 

where  and  are the main direction at 

point  and .  is the angle 

between the two main directions.  is a scale 

factor. The main direction, such as , is de-
termined by the histogram of oriented gradient 
(HOG) formed by the gradient orientations of all 

pixels within a  window region centered at 

. The orientation histogram is equally dis-
cretized into 36 bins covering 360 degree range 
of orientations. The gradient orientations of each 
pixel in the corresponding bin of histogram 

 are added by its gradient magnitude 

: 

    
[9] 

where the Gaussian window  (  in 
our experiments) aims to give emphasis on gradi-
ents close to the center of the region. The peak 
value of the orientation histogram is considered 
as the main direction. Then the angle of two 
main directions can be calculated by the number 
of bins of histogram. 
Similarly, the distance component is computed 
as: 

                           [10] 

where  is the Euclidean distance be-

tween the locations of pixel   and .  is a 
scale factor and it is set as the half of the support 

window, i.e., . The pixel with smaller dis-
tance to the center of the region will be assigned 
a higher weight in Eq.(10). 
In a word, the new similarity measure presents 
stronger constraints by combing direction and 
distance information to weight each pixel in the 
support window. It can obtain the best score 
when each pixel has similar direction and dis-
tance simultaneously. 
 
Fine Registration based on B-spline FFD 
Model 
In order to better adapt to the local complex de-
formation of organ tissue, an additional trans-
formation is required. We chose an FFD model, 
based on B-splines, which affects the transfor-
mation only in the local neighborhood of the 

control point. Suppose image  is divided into a 

number of mesh cells and let  denote a  

mesh of control points  with uniform spacing 

 (  in our experiments). The FFD can be 
defined as: 

                        [11] 

where  is a point in the image . 

 

, and  represents the lth basis 
function of the B-spline: 

                          [12] 
To find the optimal local transformation, a cost 
function which consists of smoothing constraint 

term  and similarity measure term  is 
defined as follows: 
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where  (  in our experiments) is a 
weight to balance the two terms of the cost func-
tion. 

 

 is used to guarantee the smooth-

ness of the spline-based FFD transformation, 

and  measures the similarity by the 

normalized mutual information. Because  is 

only affected by its  neighboring control 

points, i.e. the position of the control point  is 

only depends its  neighborhood grid. So 
NMI is not calculated on the full image, and it is 
only calculated between the neighborhood of the 

corresponding control point (i.e.,N1 and ) 
before and after transformation. This will greatly 
improve the computational efficiency. The two 
terms of the energy function defined in Eq.(13) 
are given as follows: 

                    
[14] 

where  is the area of the image domain, and w 

and h are its width and height.  and 

 denote the marginal entropy at  and 

, and  denotes their joint en-
tropy. 
The key of the fine registration algorithm is to 

find the optimal transformation parameters  by 

minimizing the cost . We employ an iterative 
gradient descent optimization method which 
steps in the direction of the gradient vector with 

a certain step size . The procedure of the algo-
rithm is summarized in Algorithm 1. 
Algorithm 1.  The fine registration algorithm. 

Step 1: Partition the coarse registration image  

to initialize the control point set . 
Step 2: Calculate the gradient of the cost function 

in Eq.(13), i.e. . 

Step 3: If  (  in our experiments), 

update the control point set , and 
turn to step 2. 

Step 4: Compute  by Eq.(11), Obtain the 

fine registration image  by the interpolation 
method (PVI). 
 

Results 
 
Algorithm Validation 
We first verify the effectiveness of each stage of 
the proposed registration algorithm with many 
non-rigid transformation image pairs. Fig. 4 
shows the results of three brain data sets after 
performing the registration algorithm, where (a) 
is the reference image (image download from 
(25), ARRA project) and (b) is the float image. 
The difference of (a) and (b) is shown in (c). 
From the difference we can see that there are 
large local deformations between the two input 
images. (d) shows the correspondences after out-
liers discarding by robustly estimating the global 
homography transformation model. (e) shows the 
estimated warpped meshes from all inliers. The 
warped meshes are represented by a series of lo-
cal homographies which are used to perform the 
coarse registration. The difference between the 
float image and the coarsely registered image is 
shown in (f). It demonstrates that the defor-
mation becomes smaller after performing the 
coarse registration. (g) is the transformation mesh 
which is determined based on B-spline FFD 
model. 
(h) is the deformed image after the fine registra-
tion. (i) shows the difference between the refer-
ence image (a) and the final registered float image 
(h). A large number of experiments show that, 
although there are the large local deformations 
between the two images, a very small difference 
can be obtained by performing our coarse-to-fine 
non-rigid medical image registration algorithm 
which means accurate registration can be 
achieved.  

http://ijph.tums.ac.ir/


Wan et al.: A Robust and Accurate Non-rigid Medical Image Registration … 

 

Available at:    http://ijph.tums.ac.ir                                                                                                      1686 

 
 

Fig. 4:  Three sets of experimental results produced by our coarse-to-fine registration algorithm 
  

At the same time, our method can achieve fast 
convergence in the fine registration stage because 
a coarse registration step is applied first to com-
pensate the large displacements. 
Fig (5) shows another set of testing results to 
demonstrate the effectiveness of the proposed 

algorithm. This dataset has strong noises and 
large deformations (26). In Fig. (5), (a) and (b) are 
the reference images and float images, (c) shows 
the difference of images in (a) and (b). (d) and (e) 
show the registered float images and the differ-
ences with the reference images. (f) shows the 
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difference of the reference and the float images 
registered by the hierarchical local B-spline FFD 
method (called HBFFD method). Obviously, our 
algorithm has better robustness to noises and 
transformations than HBFFD method. 
 
Quantitative Comparison and Evaluation 
We also quantitatively evaluate and measure the 
proposed registration algorithm and compare it 
with the HBFFD method which is based on the 
control points of multi-resolution. The similarity 
measurements used to evaluate the accuracy of 
our algorithm are sum of squared differences 
(SSD), sum of absolute difference (SAD), nor-
malized correlation coefficient (NCC), and nor-
malized mutual information (NMI). Table 1 lists 
the experimental results of the three data sets 
shown Fig. 4 and five data sets shown Fig. 5. 
From the results we can see that our method can 
obtain better similarity scores between the regis-
tered float images and the reference images than 
HBFFD method on each data set. 
 

 
 

Fig. 5:  Five sets of experimental results produced by 
our coarse-to-fine registration algorithm 

Table 1:  Comparison of HBFFD and our algorithm with different similarity measurements 

 
Data sets Registration 

method 
Similarity 

SSD SAD CC NMI 

Fig (4)-1 HBFFD 0.000139 0.007298 0.997311 1.362331 
Our method 0.000094 0.004915 0.999132 1.427246 

Fig. (4)-2 HBFFD 0.000068 0.005895 0.999017 1.440683 
Our method 0.000041 0.003386 0.999611 1.501243 

Fig. (4)-3 HBFFD 0.000174 0.007753 0.999326 1.496891 
Our method 0.000132 0.005291 0.999753 1.564322 

Fig. (5)-1 HBFFD 0.001145 0.025060 0.990610 1.240709 
Our method 0.001002 0.020108 0.993157 1.252207 

Fig. (5)-2 HBFFD 0.003002 0.028780 0.985250 1.242566 
Our method 0.001091 0.018340 0.991436 1.254210 

Fig. (5)-3 HBFFD 0.001557 0.027649 0.986869 1.223756 
Our method 0.001241 0.025660 0.989843 1.233242 

Fig. (5)-4 HBFFD 0.001321 0.027423 0.991089 1.240364 
Our method 0.000927 0.021150 0.995822 1.251860 

Fig. (5)-5 HBFFD 0.001051 0.023837 0.991260 1.242578 
Our method 0.000828 0.020012 0.996651 1.253413 

 

Discussion 
 
In addition to the geometric deformation model 
itself, extraction of the robust and precise feature 
correspondences is also very important. It is an 

essential step to estimate the geometric defor-
mation model in many registration methods. 
However, it is often affected by image noise, fea-
ture outliers and local deformations. In the past 
decade, a number of methods were proposed to 
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solve the robust feature matching problem. 
Among them, one kind of fuzzy correspondence 
methods, such as softassign methods (16) and 
relaxation label-ing methods (17) have been de-
veloped, in which the binary constrains of the 
correspondences are relaxed to become a fuzzy 
correspondence during the op-timization process. 
Some researchers combined the iconic feature 
and the ge-ometric feature for correspondence 
searching and outlier discarding (18-19). Howev-
er, most of these approaches have limited capa-
bility in handling outliers caused by feature ex-
traction errors or large deformations. 
This paper proposes an efficient coarse-to-fine 
non-rigid medical image regis-tration algorithm 
based on a multi-level deformable model. Com-
pared to the existing non-rigid medical image reg-
istration methods, our algorithm has the follow-
ing characteristics: 
1) The multi-level deformable model consists of 
global homography mod-el, local mesh-level 
homography model and local B-spline based 
FFD model. The coarse registration process 
which is based on the first two level models can 
effectively improve the convergence speed. It 
also helps improve the pre-cision of the fine reg-
istration process which employs an iterative op-
timization model. More reliable registration re-
sults can be obtained compared to the hier-
archical local B-spline FFD method which is 
based on the control points of multi-resolution. 
2) In order to improve the robustness of the reg-
istration algorithm, on the one hand, a robust 
algorithm for simultaneous outliers removal and 
model es-timation is applied in the estimation of 
the global level homography model; on the other 
hand, a new similarity measure with strong con-
straints is proposed and applied in the local 
mesh-level homography model. It combines di-
rection and distance information to weight each 
pixel in a support window, so as to achieve more 
accurate comparison of corresponding pixels. 
 

Conclusion 
 

This paper proposes an efficient coarse-to-fine 
non-rigid medical image registration algorithm 

based on a multi-level deformable model. The 
multi-level deformable model consists of global 
homography model, local mesh-level homogra-
phy model and local B-spline based FFD model. 
In the estimation of the global level transfor-
mation model, a robust algorithm for simultane-
ous outliers removal and model estimation is ap-
plied. A new similarity measure with strong con-
straints is proposed to robustly estimate the local 
mesh-level deformable model. It combines the 
direction and distance information to weight each 
pixel in the support window. The coarse registra-
tion of the first two level models can greatly im-
prove the convergence speed and help improve 
the precision of the fine registration stage. The 
experimental results show that our algorithm is 
more accurate than the hierarchical local B-spline 
FFD method which is based on the control 
points of multi-resolution. 
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