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Introduction 
 

Cancer leads to physical and emotional stress (1) 
among all kinds of cancers is the most common 
cancer (2). Moreover, it has ascending growth in 
deprived areas (3). Surprisingly, this illness is rare 
among men. However, it is the most common 
cause of death in women (2). Breast cancer has 
various morphologies, which are used in classify-
ing of this disease (4). Some researchers consider 
Ductal and Lobular to classify types of this cancer. 
These two morphologies (Ductal and Lobular) 
have different characteristics, but Ductal is the 
most common type, and approximately it has allo-
cated 75% to 85% of breast cancers to own (5). 
Identifying risk factors of breast cancer has be-
come an important issue among physicians and 

pathologists (6). However, by medical technolo-
gies improvements, useful risk factors are mea-
suring and recording (7). Early diagnosis of breast 
cancer is very effective in re-cover of patients, 
and it has positive impact on longevity of them. 
In spite of this cancer is so common, it will be 
the most curable when detect soon (8). Early di-
agnosis of breast cancer is very effective in re-
covery of the disease, and it has positive impact 
on longevity of patients, although this cancer is 
the most common types of cancer among wom-
en, it will be the most curable when detected ear-
ly (9). In order to diagnosis of breast cancer, in-
telligent models are useful to increase the preci-
sion and accuracy of diagnosis (10). By advance-

Abstract 
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ment in computerized software and hardware, 
the massive volume of data is recorded automati-
cally, after that efficient analysis methods help to 
analyze the data efficiently (7). 
Data mining is one of the technology improve-
ments that serve to manage data. Widespread use 
of information systems lead to merge data mining 
with traditional methods (11).  
Utilization of data mining techniques with the ap-
proach of extracting knowledge from information 
have many advantages, such as how to recognize 
diseases, reducing health care costs, reducing med-
ical errors, and last but not least improve the per-
formance of healthcare organizations (12). 

Additionally, data-mining models can be a way to 
reduce errors in decision making by physicians. 
In medical levels, data mining effort is used to 
extract relationships and patterns from a large 
number of data to predict diseases (13). The re-
sult of these analyses should be comprehensible 
for everyone (14). Totally, data mining is defined 
as a process of selecting, exploring and modeling 
large volume of data used in order to discover 
new and usable patterns from data analyzing (15). 
According to Fig. 1, steps of extracting know-
ledge from database by using data mining were 
depicted in five stages. 

 

 
 

Fig. 1: Steps of knowledge discovery in databases with data mining process (16) 
 

In the first stage, special data was selected among 
large volume of data. In the second stage, pre-
processing methods was performed on data, for 
instance controlling a missing data. In third step, 
data were ready to transform based on hypothe-
sis. Then, data-mining algorithms were selected, 
they decide about which patterns are more ap-
propriate. In fifth stage, interpretation/evaluation 
was done. All previous steps will be evaluated 
again. Consequently, it prepared us an image 
from extracted patterns and models. Knowledge 
was the final product of this process. Eventually, 
we could present this knowledge without com-
bined to other systems, or report it to other en-
thusiastic people (16). 
Hence, we can use this intelligent method as 
accurate and reliable system to early diagnosis of 
benign or malignant of breast cancer (17). This 
method could lead to save many people from 

threat of death due to breast cancer, or enhance 
their longevity and quality of their life. 
In this study, we aimed to present the most effec-
tive data mining models to identify breast cancer 
sooner. 
 

Materials and Methods 
 

Data collection 
A list of breast cancer risk factors was taken from 
a previous study (18), and then they were con-
firmed by an oncologist. Samples based on these 
risk factors were gathered from records of breast 
cancer patients, and whole of their identity in-
formation kept secret. Medical records of 208 
patients collected from two oncologist offices, 
and Javadalaemeh Clinic, from 2014 to 2015. In 
order to control missing data, the most frequent 
repeat was replaced for discrete data, and for 
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continuous missing one, the average of data in 
corresponding column is replaced (19).  
These risk factors are as follow: age, sex, BMI, 
Marital Status (MS), Age Starting of First Menstr-
uation (ASFM), the Number of Parturition (NP), 
the Number of Abortion (NA), Age Starting of 
Menopause (ASM), History of Breast Cancer, Ute-
rine and Ovarian Cancer in First-Degree Rela-
tives(HBCUOCFDR), History of Breast Cancer, 
Uterine and Ovarian Cancer in Second-Degree 
Relatives (HBCUOCSDR), History of Other Can-
cers in First-Degree Relatives (HOCFDR), Histo-
ry of Other Cancers in Second-Degree Relatives 
(HOCSDR), ER, PR, Existence of Tumor (ET), 
Size of Tumor (ST), Type of Cancer (TC). 
 

Risk factors 
Overall, 17 risk factors for breast cancer were 
used. The risk factors were divided into two 
groups (nominal and real). These risk factors are 
as follow: age (yr), sex (Male/Female), BMI 
(kg/m2), Marital Status (Single/Married), Age 
Starting of First Menstruation (yr), the Number 
of Parturition (Number), the Number of Abor-
tion (Number), Age Starting of Menopause (yr), 
History of Breast Cancer, Uterine and Ovarian 
Cancer in First-Degree Relatives(Yes/No), His-

tory of Breast Cancer, Uterine and Ovarian Can-
cer in Second-Degree Relatives (Yes/No), Histo-
ry of Other Cancers in First-Degree Relatives 
(Yes/No), History of Other Cancers in Second-
Degree Relatives (Yes/No), ER (Posi-
tive/Negative), PR (Positive/Negative), Exis-
tence of Tumor (Yes/No), Size of Tumor (Cm), 
Type of Cancer (Ductal/Lobular). 
 
Classification 
The data were analyzed by WEKA and MATLAB 
software, and 64 data mining models classified them. 
Of all 17 risk factors, 16 of them were defined as in-
dependent risk factors, and one of them that was a 
specified type of cancer divided into Ductal and Lo-
bular allocated class (dependent risk factor) tag to 
own. The stages of our method are shown in Fig.2. 
Initially, the collected breast cancer data were consi-

dered as input. Secondly, the data divided into 
train and test kind. In third stage, train data were 
learned based on a special technique and produce 
data mining models. After that, the model 
changed to learned model. In fourth step, the 
performance of the learned model became valid 
by test data. Finally, the final model was pre-
sented as output. 

 

 
 

Fig. 2: Flow chart of proposed method 
 

Experimental findings 
Configuration of the proposed models 
Samples that were belong to positive and nega-
tive class, were denoted as P and N, respectively. 
In each classification, four definitions can be ex-
plained as follow:  

 positive group and anticipate correctly called True 
Positive (TP). 

 positive group and anticipate incorrectly called 
False Positive (FP).  

 negative group and anticipate correctly called True 
Negative (TN).  

 negative group and anticipate incorrectly called 
False Negative (FN).  

Therefore, the equations for precision and accu-
racy can be defined as follow:  

Precision =  
TP

 TP +FP  
 (1)  Accuracy =  

 TP +TN  

 P+N 
 (2) 

 

Results 
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After choosing effective risk factors, two mor-
phologies of this cancer were considered (Ductal 
and Lobular). Another phase of this paper was 
data mining. In this phase the data became valid 
by a special method explained in section entitle 
“method” and the valid data after some other 
process produced final model. In order to evalua-
tion, K-Fold cross validation method was used. K 
was equal to 10 (K=10). 

The results of the Binomial Test are shown in 
Table 1. First phase of our work was presented in 
Table 1 that was designed by SPSS software 
(Chicago, IL, USA). Error was reported as 0.05. 
In addition, the value of P-value for Ductal and 
Lobular had been achieved 0; thus, our final me-
thod had high accuracy. 

  
Table 1: P-value which compares P-value between two type of breast cancer (Ductal and Lobular) 

 

Binomial Test 
Type of cancer Category n Observed Prop. Test Prop. P-Value 
Group 1 Ductal 198 .95 .50 .000 
Group 2 Lobular 10 .05   
Total  208 1.00   

 

Table 2 presents nominal risk factors (ER, PR, 
tumor size, parity, marital status and age) which 
were grouped based on frequency, percent, valid 

percent, and cumulative percent. In Table 3, 64 
data mining models are shown. There are per-
centages of accuracy and precision, too. 

 
Table 2: Grouping of nominal risk factors of breast cancer 

 
Risk factor Group Frequency Percent1 Valid Percent2 Cumulative Percent3 

ER 
Positive 137 65.2 65.2 66.2 
Negative 71 33.8 33.8 100.0 

Total 208 100.0 100.0 - 

PR 
Positive 148 70.5 70.5 71.4 
Negative 60 28.6 28.6 100.0 

Total 208 100.0 100.0 - 

MS 
Married 196 93.3 94.2 94.2 
Single 12 5.7 5.8 100.0 
Total 208 99.0 100.0 - 

ET 
Yes 179 86.1 86.1 86.1 
No 29 13.9 13.9 100.0 

Total 208 100.0 100.0 - 

HBCUOCFDR 
Yes 15 7.2 7.2 7.2 
No 193 92.8 92.8 100.0 

Total 208 100.0 100.0 - 

HBCUOCSDR 
Yes 17 8.2 8.2 8.2 
No 191 91.8 91.8 100.0 

Total 208 100.0 100.0 - 

HOCFDR 
Yes 19 9.1 9.1 9.1 
No 189 90.9 90.9 100.0 

Total 208 100.0 100.0 - 

HOCSDR 
Yes 18 8.7 8.7 8.7 
No 190 91.3 91.3 100.0 

Total 208 100.0 100.0 - 

Parity 

0-5 179 85.2 86.1 86.1 
6-11 27 12.9 13.0 99.0 
12-17 2 1.0 1.0 100.0 
Total 208 99.0 100.0 - 

TC 
Ductal 198 95.2 95.2 95.2 
Lobular 10 4.8 4.8 100.0 

Total 208 100.0 100.0 - 
1 Represents the percentages of all data, including the missing data, established by each category.  
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2 Valid percent presents only the non-missing cases. 
3 Cumulative percent brings an easier way to compare different sets of data. 

Table 3: Amount of precision and accuracy of the each model 
 

NO. Machine learning model 
Classification accuracy 

(%) 
Precision 

(%) 

1.  Bayes-Net  (20) 95.67 95.70 
2.  Naïve-Bayes   91.83 95.00 
3.  Naïve-Bayes-Updateable 91.83 95.00 
4.  Logistic  90.86 95.00 
5.  Multilayer-Perceptron 91.83 95.50 
6.  RBF-Network 94.23 95.10 
7.  Simple-Logistic   95.19 95.20 
8.  Sequential-Minimal Optimization  (21) 95.19 95.20 
9.  Voted-Perceptron  95.19 95.20 
10.  Instance-Based-Learning-algorithms 90.86 95.00 
11.  IBK 90.38 95.00 
12.  K-Star 91.82 95.00 
13.  Locally-Weighted-Learning 94.71 95.20 
14.  AdaBoost-ML  95.19 95.20 
15.  Attribute-Selected-Classifier  (22) 95.19 95.20 
16.  Bagging  95.19 95.20 
17.  Classification-Via-Clustering   69.23 94.70 
18.  Classification-Via-Regression 94.71 95.20 
19.  Cross-Validation-Parameter-Selection  (23) 95.19 95.20 
20.  Dagging 95.19 95.20 
21.  Decorate (24) 95.19 95.20 
22.  Ensembles of Nested Dichotomies (25) 95.19 95.20 
23.  Ensemble-Selection  (26) 95.19 95.20 
24.  Filtered-Classifier  (22) 95.19 95.20 
25.  Grading  95.19 95.20 

26.  Logit-Boost   95.19 95.20 

27.  Multi-Boost-AB  (27) 95.19 95.20 

28.  Multi-Class-Classifier 90.86 95.00 

29.  Multi-Scheme  95.19 95.20 
30.  Ordinal-Class-Classifier  (28) 95.19 95.20 
31.  Raced-Incremental-Logit-Boost  (29) 95.19 95.20 
32.  Random-Committee 94.23 95.10 
33.  Random-Sub-Space  (30) 95.19 95.20 
34.  Rotation-Forest  95.19 95.20 
35.  Stacking  95.19 95.20 
36.  Stacking-C  95.19 95.20 
37.  Threshold-Selector 94.23 95.10 
38.  Vote 95.19 95.20 
39.  Hyper-Pipes  (31) 95.19 95.20 
40.  classification by Voting Feature Intervals 74.52 95.60 
41.  Conjunctive-Rule   95.19 95.20 
42.  Decision-Table   95.19 95.20 
43.  Decision-Table-Naïve-Bayes  (32) 95.19 95.20 
44.  J-Repeated-incremental-pruning  (33) 95.19 95.20 
45.  Non-Nested-generalized-exemplars 92.79 95.10 
46.  One-R (34) 95.19 95.20 
47.  PART  94.23 95.10 
48.  Ridor(35) 95.19 95.20 
49.  Zero-R  95.19 95.20 
50.  Alternating-Decision Tree  (36) 95.19 95.20 
51.  Best-FirstTree   95.19 95.20 
52.  Decision-Stump  95.19 95.20 
53.  Functional trees 94.71 95.20 
54.  J48 (37) 95.19 95.20 
55.  J48-graft (38) 95.19 95.20 
56.  LAD-Tree  91.35 95.20 
57.  NB-Tree (39) 95.19 95.60 
58.  Random-Forest   93.75 95.10 
59.  Random-Tree 90.38 95.40 
60.  REP-Tree (40) 95.19 95.20 
61.  Simple-Cart  95.24 95.20 
62.  Class-Balanced-Nested-Dichotomies  (41) 95.19 95.20 
63.  (Data-Near-Balanced-ND  (41) 95.19 95.20 
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As it is obvious in Table 3, VFI were the weakest 
model in prognosis and diagnosis of breast can-
cer, and Bayes-Net was identified as the best. Fig. 
3 demonstrates the ROC curve of the four best 
models among 64 models (BN, MP, NB-Tree, 

and RT). This figure shows the performance of 
these models in WEKA software. The MP model 
has the highest ROC area value among the other 
four models. 

 

 
 

Fig. 3: ROC curve of four best models in WEKA software (BN, MP, NB-Tree, and RT) 

 

Discussion  

 
Breast cancer is one of the most common can-
cers in women. Early detection of breast cancer 
leads to declining mortality. Technology im-
provements can help early diagnosis of breast 
cancer. Data mining method is an intelligent 
model that diagnosis this cancer with more preci-
sion and accuracy. We aimed to help physicians 
by computerized models to prognosis of this 
cancer sooner, without expensive price, and have 
a less side effect on patients. Therefore, the data 
collections enter to validation process by k-fold 
method, other process were done, and finally the 
last model was generated. The data were collected 
from two physician offices and Javadalaemeh 
Clinic. Eventually, 208 patients were examined. 
Evaluation of 64 data mining models was done in 
Weka and MATLAB software. The evaluation 
was based on accuracy and precision. 
In our study, Bayes-Net with accuracy of 95.67%, 
precision of 95.70% and sensitivity of 100% was 
found the best model for prediction and diagno-

sis of breast cancer. In addition, spread of Ductal 
is more than Lobular in Kerman.  
Advantageous of BN model: 

 BN had a high ability for prognosis (42). 

 There was absence of access to valuable 
data sources BN still has a good per-
formance (42). 

 It had a high ability in controlling miss-
ing data.  

 BN had a good ability to deal with unre-
lated data.  

Comparison between ABML and BN models:  

 The base of classification used in ABML 
was random classification (13) but BN 
was a model that incorporates two kinds 
of theory (presumption and graphical) to 
display a relationship between data (43). 

 In both of them, percentages of sensitivi-
ty were the same, and percentage of ac-
curacy and precision in BN is higher 
than RBFN. 

64.  Nested-Dichotomies   95.19 95.20 
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 ABML had higher sensitivity to data 
noises, and BN has a good performance 
to make probability relationships. 

Comparison between RF and BN: 

 RF was made of some CART (Classifica-
tion and Regression Trees). These 
CARTs used some random sample data 
among the main sample data (12), BN 
was made of algorithms that can predict 
with high precision and accuracy.  

 RF was user-friendly model because it 
has just two parameters: The first para-
meter was number of random trees in 
forest, and the second parameter was 
number of predictor variables, which are 
set into subsets (12). BN had a perfect 
ability to predict values even in limitation 
of access to comprehensive data (42). 

 In this study, BN model had higher per-
centages of accuracy, precision, and sen-
sitivity than RF. 

Comparison between Bagging and BN:  

 Bagging was a model used to produce dif-
ferent models of a predictor (44). BN 
have algorithms that have many uses such 
as prognosis. 

 Bagging had a considerable accuracy de-
spite turmoil in learning collection it can 
modify accuracy (44). BN is a great way 
to represent real conclusions, and it is 
able to organize real conclusions (43). 

 

Conclusion 
 
To early predict and undergo prognosis of breast 
cancer utilization of data mining models is neces-
sary. By a reliable data mining model, we can help 
physician to early diagnosis of breast cancer. 
Therefore, the cost of treatments dramatically 
decreases, and disease progression is prevented.  
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