Iranian Journal of Public Health 2018. 47(5):713-719.

The Prevalence of Virulence Genes and Virulotypes of Escherichia coli Strains Isolated from Hospital Wastewaters in Tehran, Iran
Reza RANJBAR, Omid FARAHANI

Abstract


 Background: Due to the widespread different pathogenic strains, Escherichia coli lead many severe to normal diseases worldwide. Finding the relation of clones with genomic content and clinical features is a key point to recognize the high potential-invasive strains. Specific virulence factors include adhesions, invasions, toxins, and capsule are the main determinants of pathogenic factors of E. coli strains.

Methods: From Jun 2014 to Jun ‎‎2016, E. coli isolates recovered using standard bacteriological methods from wastewater sources in different hospitals in Tehran, Iran, were monitored to recognize the virulence genes by polymerase chain reaction (PCR) assay.

Results: The high and low presences of virulence factors were fimH, 76% and afa, 13%, respectively.

Conclusion: The results indicated the potential pathogenicity of E. coli strains circulating in hospital wastewaters in Tehran, Iran.

 

 


Keywords


Escherichia coli; Hospital wastewater; Virulence factors

Full Text:

PDF

References


Kümmerer K (2004). Resistance in the environment. J Antimicrob Chemother, 54(2): 311-20.

Lee D-Y, Shannon K, Beaudette LA (2006). Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J Microbiol Methods, 65(3): 453-67.

Ranjbar R, Pezeshknejad P, Khamesipour F et al (2017). Genomic fingerprints of Escherichia coli strains isolated from surface water in Alborz province, Iran. BMC Res Notes,10 :295.

Ranjbar R, Khamesipour F, Hosseini S (2017). Prevalence and distribution of E. coli and its virulence genes from different water sources in Alborz province, Iran. J Biochem Tech,7(2): 1116-22.

Hunter P (2003). Climate change and waterborne and vector‐borne disease. J Appl Microbiol, 94 Suppl:37S-46S.

Marshall MM, Naumovitz D, Ortega Y, Sterling CR (1997). Waterborne protozoan pathogens. Clin Microbiol Rev,10(1): 67-85.

Ronald A (2002). The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon, 49(2):71-82.

Ranjbar R, Masoudimanesh M, Dehkordi FS et al (2017). Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods; virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob Resist Infect Control,6: 4.

Ranjbar R, Sheikhshahrokh A, Jonaidi Jafari N (2017). Shiga (vero) toxin producing Escherichia coli in various types of food stuffs; virulence factors, O‐serogroups and antimicrobial resistance properties. J Food Saf, 37: e12312.

Lindberg U, Claesson I, Hanson LÅ, Jodal U (1978). Asymptomatic bacteriuria in schoolgirls: VIII. Clinical course during a 3-year follow-up. J Pediatr, 92(2): 194-9.

Hooton TM, Scholes D, Stapleton AE et al (2000). A prospective study of asymptomatic bacteriuria in sexually active young women. N Engl J Med, 343(14): 992-7.

Usein CR, Damian M, Tatu‐Chitoiu D et al (2001). Prevalence of virulence genes in Escherichia coli strains isolated from Romanian adult urinary tract infection cases. J Cell Mol Med, 5(3): 303-10.

Stevens DL, Bisno AL, Chambers HF et al (2005). Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis, 41(10):1373-406.

Agarwal J, Srivastava S, Singh M (2012). Pathogenomics of uropathogenic Escherichia coli. Indian J Med Microbiol, 30(2): 141-9.

Zhang L, Foxman B, Manning SD et al (2000). Molecular epidemiologic approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Infect Immun, 68(4): 2009-15.

Johnson JR, Russo TA, Tarr PI et al (2000). Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN(E. coli), among Escherichia coli isolates from patients with urosepsis. Infect Immun, 68(5): 3040-7.

Momtaz H, Karimian A, Madani M et al (2013). Uropathogenic Escherichia coli in Iran: serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob,12: 8.

Tajbakhsh E, Khamesipour F, Ranjbar R, Ugwu IC (2015). Prevalence of class 1 and 2 integrons in multi-drug resistant Escherichia coli isolated from aquaculture water in Chaharmahal Va Bakhtiari province, Iran. Ann Clin Microbiol Antimicrob, 14: 37.

Farshad S, Ranijbar R, Japoni A et al (2012). Microbial susceptibility, virulence factors, and plasmid profiles of uropathogenic Escherichia coli strains isolated from children in Jahrom, Iran. Arch Iran Med, 15(5): 312-316.

Jahandeh N, Ranjbar R, Behzadi P, Behzadi E (2015). Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes. Cent European J Urol, 68(4): 452-8.

Anvarinejad M, Farshad S, Ranjbar R et al (2012). Genotypic analysis of E. coli strains isolated from patients with cystitis and pyelonephritis. Iran Red Crescent Med J,14(7): 408-416.

Ranjbar R, Haghi-Ashtiani M, Jafari NJ, Abedini M (2009). The prevalence and antimicrobial susceptibility of bacterial uropathogens isolated from pediatric patients. Iran J Public Health, 38(2): 134-8.

Ranjbar R, Hosseini S, Zahraei-Salehi T et al (2016). Investigation on prevalence of Escherichia coli strains carrying virulence genes ipaH, estA, eaeA and bfpA isolated from different water sources. Asian Pac J Trop Dis, 6(4): 278-83.

Khademestarki NS, Ranjbar R (2016). The phylogenetic study of Escherichia coli strains isolated from clinical cases. J Pure Appl Microbio,10(1): 351-5.

Johnson JR, Stell AL (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis,181(1): 261-72.

Foxman B, Zhang L, Tallman P et al (1995). Virulence characteristics of Escherichia coli causing first urinary tract infection predict risk of second infection. J Infect Dis,172(6): 1536-41.

Johnson JR, Brown JJ, Carlino UB, Russo TA (1998). Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. J Infect Dis,177(4): 1120-4.

Le Bouguenec C, Archambaud M, Labigne A (1992). Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J Clin Microbiol, 30(5):1189-93.

Ranjbar R, Farahani O (2017). The Prevalence of Plasmid-mediated Quinolone Resistance Genes in Escherichia coli Isolated from Hospital Wastewater Sources in Tehran, Iran. Iran J Public Health, 46(9): 1285-91.

APHA/AWWA/WEF (2012). Standard methods for the examination of water and wastewater. 22nd edn American public health Association/American water works Association/Water environment federation, Washington DC, USA

Rendón MaA, Saldaña Z, Erdem AL et al (2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A,104(25): 10637-42.

Jauréguy F, Carbonnelle E, Bonacorsi S et al (2007). Host and bacterial determinants of initial severity and outcome of Escherichia coli sepsis. Clin Microbiol Infect, 13(9): 854-62.

Dobrindt U, Blum-Oehler G, Hartsch T et al (2001). S-Fimbria-Encoding Determinant sfa I Is Located on Pathogenicity Island III536 of Uropathogenic Escherichia coli Strain 536. Infect Immun, 69(7): 4248-56.

Le Bouguenec C, Garcia M-I, Ouin V et al (1993). Characterization of plasmid-borne afa-3 gene clusters encoding afimbrial adhesins expressed by Escherichia coli strains associated with intestinal or urinary tract infections. Infect Immun, 61(12): 5106-14.

Wiles TJ, Kulesus RR, Mulvey MA (2008). Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol, 85(1): 11-9.

Mulvey MA (2002). Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol, 4(5): 257-71.

Guyer DM, Gunther IV NW, Mobley HL (2001). Secreted proteins and other features specific to uropathogenic Escherichia coli. J Infect Dis, 183 Suppl 1:S32-5.

Bower JM, Eto DS, Mulvey MA (2005). Covert operations of uropathogenic Escherichia coli within the urinary tract. Traffic, 6(1): 18-31.

Antão E-M, Wieler LH, Ewers C (2009). Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog, 1(1): 22.

Lane M, Mobley H (2007). Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int, 72(1): 19-25.

Yamamoto S (2007). Molecular epidemiology of uropathogenic Escherichia coli. J Infect Chemother, 13(2): 68-73.

Bingen-Bidois M, Clermont O, Bonacorsi S et al (2002). Phylogenetic analysis and prevalence of urosepsis strains of Escherichia coli bearing pathogenicity island-like domains. Infect Immun,70(6): 3216-26.

Soto S, Zuniga S, Ulleryd P, Vila J (2011). Acquisition of a pathogenicity island in an Escherichia coli clinical isolate causing febrile urinary tract infection. Eur J Clin Microbiol Infect Dis, 30(12): 1543-50.

Hancock V, Ferrieres L, Klemm P (2008). The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology, 154(Pt 1): 167-75.

Clarke TE, Tari LW, Vogel HJ (2001). Structural biology of bacterial iron uptake systems. Curr Top Med Chem, 1(1): 7-30.

Rowe MC, Withers HL, Swift S (2010). Uropathogenic Escherichia coli forms biofilm aggregates under iron restriction that disperse upon the supply of iron. FEMS Microbiol Lett, 307(1): 102-9.

Ranjbar R, Karami A, Farshad S, Giammanco GM, Mammina C (2014). Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol, 37(1):1-15.

Khakabimamaghani S, Najafi A, Ranjbar R, Raam M (2013). GelClust: a software tool for gel electrophoresis images analysis and dendrogram generation. Comput Methods Programs Biomed,111 (2):512-8.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.