The Resistance to Plague Infection among Meriones persicus from Endemic and Non-endemic Regions in Iran: The Role of Gut Microbiota

  • Mehdi ASSMAR Dept. of Parasitology, Pasteur Institute of Iran, Tehran, Iran
  • Marjan KEYPOUR Dept. of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Hamadan, Iran
  • Mehdi ROHANI National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Hamadan, Iran Dept. of Microbiology, Pasteur Institute of Iran, Tehran, Iran
  • Ehsan MOSTAFAVI Dept. of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Hamadan, Iran
  • Dariush DANESHVAR FARHUD School of Public Health, Tehran University of Medical Sciences, Tehran, Iran Dept. of Basic Sciences/Ethics, Iranian Academy of Medical Sciences, Tehran, Iran
Keywords: Gut microbiota, Infectious disease, Meriones persicus, Plague, Iran

Abstract

Abstract Background: The present study was conducted approximately 40 years ago, but its results have not been released. At the time of this study, the importance of the gut microbiota was not fully understood. Methods: Meriones persicus rodents, as one of the major reservoirs of Yersinia pestis bacterium in Iran, were compared in a disease endemic area (Akanlu, Hamadan, western Iran) and a non-endemic zone (Telo, Tehran, Iran) from 1977 to1981. Results: This study was able to transmit the resistance to Y. pestis to other rodents creatively by using and transferring gut microbiota. Conclusion: The study indicated for the first time that the gut microbiota could affect the sensitivity to plague in Meriones in Telo.  

References

Finney CA, Kamhawi S, Wasmuth JD (2015). Does the arthropod microbiota impact the establishment of vector-borne diseases in mammalian hosts? PLoS Pathog, 11:e1004646.

Weldon L, Abolins S, Lenzi L et al (2015). The gut microbiota of wild mice. PLoS One, 10:e0134643.

Mosca A, Leclerc M, Hugot JP (2016). Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol, 7: 455.

McKenney PT, Pamer EG (2015). From hype to hope: the gut microbiota in enteric infectious disease. Cell, 163: 1326-1332.

Van Den Elsen LW, Poyntz HC, Weyrich LS et al (2017). Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin Transl Immunology, 6: e125.

Esamaeili S, Azadmanesh K, Naddaf SR et al (2013). Serologic survey of plague in animals, Western Iran. Emerg Infec Dis, 19 (9): 1549-1551.

Hashemi Shahraki A, Carniel E, Mostafavi E (2016). Plague in Iran: its history and current status. Epidemiol Health, 38: e2016033

Baltazard M, Seydian B, Mofidi C, Bahmanyar M, Pournaki R (1953). Sur la resistance a la peste de certaines especes de rongeurs sauvages.1.faits observes dans la nature. Annales de l institut Pasteur. pp. 411-442.

Ellerman J (1941). The families and genera of living rodents. Volume II. Muridae. British Museum Inc, England, pp.: 1-690

Shar S, Lkhagvasuren D, Molur S (2016). Rhombomys opimus (errata version published in 2017). The IUCN Red List of Threatened Species, 2016: e.T19686A115153015.

Tjio J, Whang J (1962). Chromosome Preparatons of Bone Marrow Cells without Prior In Vitro Culture or In Vivo Colchicine Administration. Stain Technol, 37: 17-20.

Yunis JJ, Sanchez O (1975). The G-banded prophase chromosomes of man. Humangenetik, 27 (3): 167-172.

Buckton KE, Evans HJ (1973). Methods for the analysis of human chromosome aberrations. World Health Organization Inc, Geneva. pp. 60.

Keyvanfar A (1962). Sérologie et immunologie de deux espèces de thonidés (Germo alalunga Gmelin et Thunnus thynnus Linné) de l'Atlantique et de la Méditerranée. Revue des Travaux de l'Institut des Pêches Maritimes, 26 (4): 407-456.

Cavanaugh D, Deoras P, Hunter D, Marshall Jr J (1970). Some observations on the necessity for serological testing of rodent sera for Pasteurella pestis antibody in a plague control programme. Bull World Health Organ, 42 (3): 451-459.

Suzuki S, Chikasato Y, Hotta S (1974). Studies on antiplague haemagglutinating antibodies: Treatment of test sera with acetone and 2-mercaptoethanol. Bull World Health Organ, 51 (3): 237- 243.

Davis D, Heisch R, McNeill D, Meyer K (1968). Serological survey of plague in rodents and other small mammals in Kenya. Trans R Soc Trop Med Hyg, 62 (6): 838-861.

Leonardy J (1971). Serum protein electrophoresis in office practice. South Med J, 64 (2): 129-137.

Bock E (1978). Immunoglobulins, prealbumin, transferrin, albumin, and alpha2-macroglobulin in cerebrospinal fluid and serum in schizophrenic patients. Birth Defects Orig Artic Ser, 14 (5):283-295.

Schwick HG, Störiko K, Becker W (1969). Qualitative determination of plasma proteins by immunoprecipitation. Behring Diagnostics Inc, USA, pp. 1-40.

Daneshmand P, Farhud D (1990). Alpha-1-antitrypsin types and serum levels in toxoplasmosis. Hum Hered, 40 (2): 116-117.

Smithies O (1955). Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem J, 61 (4): 629-641.

Farhoud D (1979). Use of transferrin polymorphism in legal medicine and paternity disputed cases Iran J Public Health, 8 (1): 1-2.

Farhud D, Sadighi H, Amirshahi P, Tavakkoli F (1993). Serum level measurements of Gc, Cp, IgG, IgA and IgM in patients with Favism in Iran. Iran J Public Health, 22 (1): 1-4.

Porter RR (1958). Separation and isolation of fractions of rabbit gamma-globulin containing the antibody and antigenic combining sites. Nature, 182 (4636): 670-1.

Steinbuch M, Audran R (1969). The isolation of IgG from mammalian sera with the aid of caprylic acid. Arc Biochem Biophys, 134 (2): 279-284.

Hopkinson D, Spencer N, Harris H (1963). Red cell acid phosphatase variants: a new human polymorphism. Nature, 199:969–971.

Parkin B, Adams EG (1975). The typing of esterase D in human bloodstains. Med Sci Law, 15 (2): 102-105.

Fitch L, Parr C (1966). Development of zymograms by paint brush technique. Biochem J, 99 (1): 1-20.

Hopkinson D, Spencer N, Harris H (1964). Genetical studies on human red cell acid phosphatase. Am J Hum Genet, 16: 141-154.

Bowman JE, Frischer H, Ajmar F, Carson PE, Gower MK (1967). Population, family and biochemical investigation of human adenylate kinase polymorphism. Nature, 214 (5093): 1156-8.

Spencer N, Hopkinson D, Harris H (1964). Phosphoglucomutase polymorphism in man. Nature, 204: 742-5.

Gordon R. M. (1956). Insects of medical importance. Br Med J, 2 (5001): 1103.

Farhang-Azid A (1969). The flea fauna of Iran. V. Fleas collected from Khorasan Ostan from 1965 to 1967. Bull Soc Pathol Exot Filiales, 62 (1): 153-8.

Brumpt É (1949). Precis Parasitology. 6th ed. Masson Inc, France, pp: 1-1042.

Yamaguti S (1959). Systema Helminthum. vol. II The cestodes of vertebrates. Interscience Inc, USA, pp: 1-860

Reed LJ, Muench H (1938). A simple method of estimating fifty per cent endpoints. Am J Epidemiol, 27 (3): 493-497.

Reading CA, Glynn LE (1981). Gradwohl's Clinical Laboratory Methods and Diagnosis. Immunology, 43 (4): 803.

Misonne X (1959). The rodents of the areas of the Congolese plaguel. Ann Soc Belg Med Trop (1920), 39: 437-493.

Clarke TB, Davis KM, Lysenko ES et al (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med, 16 (2): 228-231.

Lubet MT, Kettman JR (1978). Primary antibody and delayed type hypersensitivity response of mice to ovalbumin. Immunogenetics, 6 (1): 69-79.

Carniel E (2001). The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect, 3 (7): 561-9.

Golvan Y, Rioux J (1961). Ecologie des mérions du Kurdistan Iranien: relations avec l'épidémiologie de la peste rurale. Ann Parasit Hum Comp, 36 (4): 449-558.

Karimi Y (1963). Conservation naturelle de la peste dans le sol. Bull Soc Pathol Exot Filiales, 56: 1183-1186.

Drissi F, Raoult D, Merhej V (2017). Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog, 106: 182-194.

Kinross JM, Darzi AW, Nicholson JK (2011). Gut microbiome-host interactions in health and disease. Genome Med, 3 (3): 14.

Lozupone CA, Stombaugh JI, Gordon JI et al (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489 (7415): 220-230.

Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006). Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 313 (5790): 1126-1130.

Willing BP, Vacharaksa A, Croxen M et al (2011). Altering host resistance to infections through microbial transplantation. PLoS One, 6 (10): e26988.

Zheng Y, Valdez PA, Danilenko DM et al (2008). Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med, 14 (3): 282-9.

Published
2017-12-31
How to Cite
1.
ASSMAR M, KEYPOUR M, ROHANI M, MOSTAFAVI E, DANESHVAR FARHUD D. The Resistance to Plague Infection among Meriones persicus from Endemic and Non-endemic Regions in Iran: The Role of Gut Microbiota. IJPH. 47(1):86-4.
Section
Original Article(s)