Iranian Journal of Public Health 2017. 46(11):1475-1485.

Role of Molecular Biology in Cancer Treatment: A Review Article
Aman IMRAN, Hafiza Yasara QAMAR, Qurban ALI, Hafsa NAEEM, Mariam RIAZ, Saima AMIN, Naila KANWAL, Fawad ALI, Muhammad Farooq SABAR, Idrees Ahmad NASIR



Background: Cancer is a genetic disease and mainly arises due to a number of reasons include activation of oncogenes, malfunction of tumor suppressor genes or mutagenesis due to external factors.

Methods: This article was written from the data collected from PubMed, Nature, Science Direct, Springer and Elsevier groups of journals.

Results: Oncogenes are deregulated form of normal proto-oncogenes required for cell division, differentiation and regulation. The conversion of proto-oncogene to oncogene is caused due to translocation, rearrangement of chromosomes or mutation in gene due to addition, deletion, duplication or viral infection. These oncogenes are targeted by drugs or RNAi system to prevent proliferation of cancerous cells. There have been developed different techniques of molecular biology used to diagnose and treat cancer, including retroviral therapy, silencing of oncogenes and mutations in tumor suppressor genes.

Conclusion: Among all the techniques used, RNAi, zinc finger nucleases and CRISPR hold a brighter future towards creating a Cancer Free World.




Cancer, Oncogenes, Proto-oncogenes, Mutagenesis, Viral infection, Tumor, CRISPR

Full Text:



Gorga F (1998). The Molecular Basis of Cancer. Bridgewater Rev, 17(2):3-6.

McCann J, Choi E, Yamasaki E, Ames BN (1975). Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci U S A, 72(12):5135-9.

Perry AR (2001). Oncogenes. Van Nostrand's Scientific Encyclopedia. eLS.

Croce CM (2008). Oncogenes and cancer. N Engl J Med, 358:502-11.

Pierotti MA, Sozzi G, Croce CM (2003). Mechanisms of oncogene activation. Kufe DW, Pollock RE, Weichselbaum RR et al. Holland-Frei Cancer Med, 6th. 2003.

Şevik M (2012). Oncogenic viruses and mechanisms of oncogenesis. Turk J Vet Anim Sci, 36(4):323-9.

Javed S, Ali M, Ali F, Anwar SS, Wajid N (2015). Status of oxidative stress in breast cancer patients in Pakistani population. Adv Life Sci, 2(3):115-8.

Luo J, Solimini NL, Elledge SJ (2009). Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 136(5):823-37.

Diamandis EP (1992). Oncogenes and tumor suppressor genes: new biochemical tests. Crit Rev Clin Lab Sci, 29(3-4):269-305.

Park BH, Vogelstein B (2003). Tumor-suppressor genes. Cancer Med, 6:87-102.

Englert C, Hou X, Maheswaran S et al (1995). WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J, 14(19):4662-75.

Soussi T (2000). The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci, 910:121-37.

Diamandis EP (1997). Clinical applications of tumor suppressor genes and oncogenes in cancer. Clin Chim Acta, 257(2):157-80.

Ahmed T, Ahmed RS, Basharat MU et al (2013). Comparative study to access coagulation abnormalities in breast cancer. Adv Life Sci. 1(2):96-103.

Lopez-Chavez A, Thomas A, Rajan A et al (2015). Molecular profiling and targeted therapy for advanced thoracic malignancies: a biomarker-derived, multiarm, multihistology phase II basket trial. J Clin Oncol, 33(9):1000-7.

Khan MT, Afzal S, Rehman AU, Zeb T (2015). Interleukin 10 (IL-10) promoter-1082 A> G polymorphism and risk of cancer: Meta-analysis. Adv Life Sci, 2(2):67-73.

Sudhakar A (2009). History of cancer, ancient and modern treatment methods. J Cancer Sci Ther, 1(2):1-4.

Ottolino-Perry K, Diallo J-S, Lichty BD, Bell JC, McCart JA (2010). Intelligent design: combination therapy with oncolytic viruses. Mol Ther, 18(2):251-63.

Barquinero J, Eixarch H, Perez-Melgosa M (2004). Retroviral vectors: new applications for an old tool. Gene Ther, 11 Suppl 1:S3-9.

Solly SK, Trajcevski S, Frisén C, et al (2003). Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther, 10(1):30-9.

Mikkers H, Berns A (2003). Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res, 88:53-99.

Dudley JP (2003). Tag, you're hit: retroviral insertions identify genes involved in cancer. Trends Mol Med, 9(2):43-5.

Lund AH, Turner G, Trubetskoy A et al (2002). Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet, 32(1):160-5.

Mikkers H, Allen J, Knipscheer P et al (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet, 32(1):153-9.

Suzuki T, Shen H, Akagi K et al (2002). New genes involved in cancer identified by retroviral tagging. Nat Genet, 32(1):166-74.

Yi Y, Jong Noh M, Hee Lee K (2011). Current advances in retroviral gene therapy. Curr Gene Ther, 11(3):218-28.

Mergia A, Chari S, Kolson DL et al (2001). The efficiency of simian foamy virus vector type-1 (SFV-1) in nondividing cells and in human PBLs. Virology, 280(2):243-52.

Rethwilm A (2007). Foamy virus vectors: an awaited alternative to gammaretro-and lentiviral vectors. Curr Gene Ther, 7(4):261-71.

Callahan ME, Switzer WM, Matthews AL et al (1999). Persistent Zoonotic Infection of a Human with Simian Foamy Virus in the Absence of an Intact orf-2Accessory Gene. J Virol, 73(11):9619-24.

Heneine W, Switzer WM, Sandstrom P et al (1998). Identification of a human population infected with simian foamy viruses. Nat Med, 4(4):403-7.

Schweizer M, Falcone V, Gänge J, Turek R, Neumann-Haefelin D (1997). Simian foamy virus isolated from an accidentally infected human individual. J Virol, 71(6):4821-4.

Capecchi MR (2005). Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet, 6(6):507-12.

Van Dyke T, Jacks T (2002). Cancer modeling in the modern era: progress and challenges. Cell, 108(2):135-44.

Flintoft L (2011). Animal models: Mastering RNAi in mice. Nat Rev Genet, 12(6):380.

Dow LE, Lowe SW (2012). Life in the fast lane: mammalian disease models in the genomics era. Cell, 148(6):1099-109.

McManus MT, Sharp PA (2002). Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 3(10):737-47.

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 11(9):636-46.

Carroll D (2011). Genome engineering with zinc-finger nucleases. Genetics, 188(4):773-82.

Wyman C, Kanaar R (2006). DNA double-strand break repair: all's well that ends well. Annu Rev Genet, 40:363-83.

Kim Y-G, Cha J, Chandrasegaran S (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A, 93(3):1156-60.

Bibikova M, Carroll D, Segal DJ et al (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 21(1):289-97.

Maeder ML, Thibodeau-Beganny S, Osiak A et al (2008). Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell, 31(2):294-301.

Ramirez CL, Foley JE, Wright DA et al (2008). Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods, 5(5):374-5.

Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998). FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A, 95(18):10570-5.

Bhakta MS, Henry IM, Ousterout DG et al (2013). Highly active zinc-finger nucleases by extended modular assembly. Genome Res, 23(3):530-8.

Sander JD, Dahlborg EJ, Goodwin MJ et al (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods, 8(1):67-9.

Campbell JM, Hartjes KA, Nelson TJ, Xu X, Ekker SC (2013). New and TALENted genome engineering toolbox. Circ Res, 113(5):571-87.

Santiago Y, Chan E, Liu P-Q et al (2008). Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A, 105(15):5809-14.

Bedell VM, Wang Y, Campbell JM et al (2012). In vivo genome editing using a high-efficiency TALEN system. Nature, 491(7422):114-8.

Boch J (2011). TALEs of genome targeting. Nat Biotechnol, 29(2):135-6.

Wu X, Blackburn P, Tschumper R, Ekker SC, Jelinek DF (2014). TALEN-mediated genetic tailoring as a tool to analyze the function of acquired mutations in multiple myeloma cells. Blood Cancer J, 4(5):e210.

Hsu PD, Lander ES, Zhang F (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6):1262-78.

Mao XY, Dai JX, Zhou HH, Liu ZQ, Jin WL (2016). Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget, 7(22):33461-71.

Bondy-Denomy J, Davidson AR (2014). To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends Microbiol, 22(4):218-25.

Way JC, Collins JJ, Keasling JD, Silver PA (2014). Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell, 157(1):151-61.


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.