Association of Angiotensin Converting Enzyme (ACE) Gene Polymorphism and Diabetic Nephropathy

T Golmohamadi¹, *A Nikzamir¹, M Nakhjavani², M Zahrai¹, A Amirzargar³, R Saffari²

¹ Dept. of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Iran.
² Dept. of Endocrinology and Metabolism, Faculty of Medicine, Tehran University of Medical Sciences, Iran
³ Dept. of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Iran

(Received 3 Jan 2006; revised 27 Feb 2006; accepted 19 May 2006)

Abstract
Angiotensin I-converting Enzyme (ACE) gene polymorphism; genotype DD or D allele may be involved with an increased susceptibility to type 2 diabetes and diabetic nephropathy (DN). We examined the frequency of ACE gene polymorphism in 170 patients (85 type 2 diabetes with nephropathy and 85 without it) in Tehran, Iran. DNA was extracted from the white blood cells and the I/D polymorphism of the ACE gene was detected by PCR. The frequency of DD, ID and II genotypes in type 2 diabetic patients were 20%, 61.2% and 18.8%, and in patients with nephropathy 30.6%, 55.3%, 14.1%, respectively. The DD genotype of the DN group was higher than that of the type 2 diabetes patients (30.6% vs 20%, P=0.157, RR=1.3) and the control group (30.6% vs 14.3%, P=0.006, RR=2.9). The frequency of D allele in nephropathic patients was 58.2% as compared to the type 2 diabetic patients without nephropathy (50.5%) P=0.19, RR=1.16. The D allele frequency in the DN group was found slightly higher than of the type 2 diabetes (X²=0.684, OR=0.709, 95%CI: 0.313-1.606, P=0.408) which indicated the D allele was not associated with DN. It is suggested that DD genotype and D allele are not associated with diabetic nephropathy.

Keywords: Angiotensin converting enzyme, Genetic polymorphism, Insertion/deletion, Diabetic nephropathy, Iran

Introduction
Diabetic nephropathy (DN) is now the most common cause of end stage renal disease (1, 2). Patients with diabetes mellitus (DM) have the risk of development some complications such as diabetic nephropathy (DN), diabetic retinopathy and cardiovascular disease. Despite numerous reports suggesting a substantial genetic contribution to the susceptibility to type 2 diabetes (T2D) and diabetic nephropathy, no major susceptibility genes have been identified so far (1, 2). ACE plays an important role in the renin angiotensin system cascade by converting angiotensin I to angiotensin II (3-7). Angiotensin II (Ang II) is a potent vasoconstrictor of the systemic and the local blood pressure (8-12). Ang II increases systemic and glomerular blood pressure, stimulates mesangial cell proliferation and tissue growth (13-15).

Some of studies suggest that genetic factors may be involved in the etiology of renal disease in T2D (16-20). One possible genetic factor is the angiotensin-I converting enzyme (ACE) gene insertion (I), deletion (D) polymorphism within the human ACE gene (21-23). Based on the presence or absence of a 287 base pair sequence in intron16, three genotypes DD, II homozygotes and ID heterozygote are found (24-27). About the association of the ACE and ID polymorphism and the development of diabetic nephropathy, Staessen et al. have reported a general increased risk for diabetic nephropathy in individuals of carrying the D allele (28).
Results from recent morphological studies in patients with T2D have verified this hypothesis that the DD genotype is associated with progression of DN (29-32). In contrast, Kunz et al. did not observe this association (33).

The goal of the present study was to investigate the relationship of ACE gene polymorphism with increasing risk of nephropathy in patients with T2D in Tehran (capital of Iran) population.

Materials and Methods
We studied ACE gene polymorphism in 170 patients (85 T2D with nephropathy and 85 without it). T2D patients were recruited from Imam Hospital of Tehran University of Medical Sciences, and then a detailed medical history of each patient was obtained. Blood pressure was measured as recommended by the American Diabetic Association.

The weight and the height were recorded and the body mass index (BMI) was calculated using the formula BMI: Weight/ Height (kg/m²). Nephropathy was defined as the presence of macroalbuminuria (≥ 300 mg/day).

After a 12 h overnight fasting, 10 ml of 15% EDTA anticoagulated blood samples and serum were drawn from the patients, and centrifuged within 2 h. Buffy coat layers for DNA extraction and serum were refrigerated at -20 °C.

Urinary excretion of albumin was measured by 24 h urine collection.

Genomic DNA was isolated from peripheral blood leukocytes according to a standard salting out method (34). Amplification was carried out in a DNA thermocycler [Eppendorf Master cycler].

First, PCR was performed using 20 pmoles of each primer (flanking primer pair):

- Sense oligo 5′- CTG GAG ACC ACT CCC ATC TCT TCT 3′
- Anti sense oligo: 5′-GAT GTG GCC ATC ACA TTC GTC AGA T-3′ in a final volume of 25µl, containing (0.5 µg genomic DNA, 2 mM Mgcl2, 50 mM kcl, 10mM Tris- Hcl (pH=8.3), 0.2 mM of each dNTP, and 0.5 unit of Taq polymerase. PCR was done with an initial denaturing time at 94 °C for 1 min.

Then the DNA was amplified for 30 cycles with denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, and extension at 72 °C for 1 min. This was followed by final extension at 72 °C for 8 min.

PCR products were directly visualized using ethidium bromide staining after electrophoresis in a 2% agarose gel (35-37).

The amplification product is a 190 bp fragment in the presence of the deletion (D) allele and a 490 bp fragment in the presence of the insertion (I) allele. Therefore, there were three genotypes after electrophoresis:

- A 490 bp band (genotype II),
- 190 bp band (genotype DD),
- or both 490 and 190bp band (genotype ID).

Mistyping of ID heterozygote as D homoygotes may occur.

Thus, each sample that had the DD genotype was applied to PCR amplification using the forward:

- 5′- TCG GAC CAC AGC GCC CGC CAC TAC-3′; and the reverse:
- 5′- TCG CCA GCC CTC CCA TGC CCA TAA-3′ primers with identical PCR conditions except for an annealing temperature of 67 °C.

The reaction yields a 335-bp amplicon only in the presence of an I allele, and no product for homozygous DD samples.

Urinary albumin was measured by immuno turbidometry method (CECIL9000, USA). HbA1c was measured by HPLC method (DSS Model, DREW-England).

Statistical analysis The SPSS statistical software package version 11.5 was used for the statistical analyses. Genotype and allele frequencies of ACE gene polymorphism were compared between type 2 diabetic patients with and without nephropathy using χ²-test. Odds ratios (OR) as estimates of relative risk for disease were calculated with 95% confidence intervals. Two-tailed Student’s t-test was also used to compare quantitative data. Statistical significance was assumed at the P< 0.05 level.
Results
The ACE gene frequencies are presented in Table 3 and Fig. 1.
As shown in Table 1, T2D patients with and without nephropathy were well-matched for gender, age, body mass index (BMI), duration of diabetes, biochemical parameters and HbA1c values. The average age of the control subjects (59.5±7.6 yr) was slightly higher than that of the DN (59.2-8.2), but gender distribution was the same in both groups (X²=1.6, df=1, P=1.000).

Nephropathic patients had significantly higher systolic blood pressure values. The study groups were compared with respect to clinical characteristic and biochemical parameters. Serum creatinine, fasting blood glucose (FBS) levels and urinary protein/day increased significantly in patients with nephropathy compared to those without it (P<0.05). Table 2 shows that the patients clinical and biochemical characteristics did not vary according to ACE genotype status.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Type 2 diabetic patients without nephropathy (control)</th>
<th>Type 2 diabetic patients with nephropathy (case)</th>
<th>*P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>59.5±7.6<sup>a</sup></td>
<td>59.2-8.2</td>
<td>0.802</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>43/42</td>
<td>43/42</td>
<td>1.000</td>
</tr>
<tr>
<td>Diabetic duration (yr)</td>
<td>14.5±3.6</td>
<td>11.6-4.7</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.9±12.8</td>
<td>26.4-3.9</td>
<td>0.282</td>
</tr>
<tr>
<td>Systolic Blood Pressure mmHg</td>
<td>134.8±17.6</td>
<td>140.7-26.1</td>
<td>0.091</td>
</tr>
<tr>
<td>Diastolic Blood Pressure mmHg</td>
<td>86.2±11.6</td>
<td>89.1-10.2</td>
<td>0.107</td>
</tr>
<tr>
<td>FBS (mg/dl)</td>
<td>204.6±52.1</td>
<td>226.4-63.3</td>
<td>0.015</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>207.2±39.4</td>
<td>217.8-45.7</td>
<td>0.110</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>199.2±92.9</td>
<td>198.7-88.4</td>
<td>0.973</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>43.6±9.5</td>
<td>42.9-9.5</td>
<td>0.669</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>123.1±35.5</td>
<td>121.9-31.2</td>
<td>0.815</td>
</tr>
<tr>
<td>VLDL (mg/dl)</td>
<td>37.4±10.9</td>
<td>36.9-13.3</td>
<td>0.806</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.89±0.19</td>
<td>1.05-0.25</td>
<td>0.000</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.3±1.9</td>
<td>8.8-1.9</td>
<td>0.146</td>
</tr>
<tr>
<td>Urinary protein (mg/day)</td>
<td>6.46±3.7</td>
<td>800.1-393.6</td>
<td>0.000</td>
</tr>
<tr>
<td>Urinary volume (ml/day)</td>
<td>1440.8±332.9</td>
<td>1374.1-609.2</td>
<td>0.377</td>
</tr>
</tbody>
</table>

^aData are presented as mean±SD. Comparisons were made using student’s t test (for continuous variables). Statistically significant; *P<0.05
Table 2: Clinical and biochemical characteristics of the subjects distributed according to their ACE genotype

<table>
<thead>
<tr>
<th>Variable</th>
<th>DD</th>
<th>ID</th>
<th>II</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>59.6±8.47</td>
<td>59.5±7.97</td>
<td>58.2±6.9</td>
<td>0.891</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>26/25</td>
<td>43/48</td>
<td>17/11</td>
<td>0.459</td>
</tr>
<tr>
<td>Diabetic duration (yr)</td>
<td>12.2±4.65</td>
<td>13.41±4.08</td>
<td>13.3±5.15</td>
<td>0.103</td>
</tr>
<tr>
<td>BMI (kg/m)</td>
<td>26.8±4.75</td>
<td>27.9±12.1</td>
<td>25.4±5.46</td>
<td>0.499</td>
</tr>
<tr>
<td>Systolic (mmHg)</td>
<td>140.5±20.1</td>
<td>136.72±23.12</td>
<td>136.10±24.10</td>
<td>0.599</td>
</tr>
<tr>
<td>Diastolic (mmHg)</td>
<td>88.9±11.10</td>
<td>87.30±23.12</td>
<td>86.46±10.40</td>
<td>0.656</td>
</tr>
<tr>
<td>FBS (mg/d)</td>
<td>224.3±68.36</td>
<td>210±51.79</td>
<td>216.18±61.71</td>
<td>0.527</td>
</tr>
<tr>
<td>Cholesterol (mg/d)</td>
<td>219.84±44.45</td>
<td>208.87±40.72</td>
<td>211.1±46.37</td>
<td>0.361</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>221.63±105.1</td>
<td>194.24±82.9</td>
<td>173.11±77.8</td>
<td>0.541</td>
</tr>
<tr>
<td>HDL (mg/d)</td>
<td>43.71±9.65</td>
<td>43.59±9.81</td>
<td>41.61±7.94</td>
<td>0.703</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>124.53±36.1</td>
<td>123.4±32.1</td>
<td>115.6±32.5</td>
<td>0.123</td>
</tr>
<tr>
<td>VLDL (mg/dl)</td>
<td>40.1±12.8</td>
<td>36.6±12.1</td>
<td>33.6±10.0</td>
<td>0.769</td>
</tr>
<tr>
<td>Urinary protein (mg/day)</td>
<td>592.06±548.21</td>
<td>305.70±421.03</td>
<td>376.7±474.3</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Data are presented as mean± SD. Comparisons were made using Student’s t-test (for continuous variables). Statistically significant; *P< 0.05 between DD and ID/II

Table 3: Allele and genotype frequencies of gene insertion/deletion polymorphism in T2D with and without nephropathy

<table>
<thead>
<tr>
<th>Genotype</th>
<th>DN* n=85</th>
<th>DM** n=85</th>
<th>P value Type 2 DM vs Type 2 diabetes with DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>DD</td>
<td>26</td>
<td>30.6</td>
<td>17</td>
</tr>
<tr>
<td>ID</td>
<td>47</td>
<td>55.3</td>
<td>52</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>14.1</td>
<td>16</td>
</tr>
<tr>
<td>allele</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>99</td>
<td>58.2</td>
<td>86</td>
</tr>
<tr>
<td>I</td>
<td>71</td>
<td>41.7</td>
<td>84</td>
</tr>
</tbody>
</table>

The distribution and comparison of alleles and genotypes frequency of ACE gene polymorphism in each was made using Chi-square test, Fisher’s exact, likelihood ratio
*DN; Diabetic nephropathy
**DM; Type 2 diabetes mellitus
Discussion
Although the I/D polymorphism is in the intronic region of the ACE gene, many studies showed that the DD genotype strongly was associated with increased serum ACE levels. The DD genotype leads to higher ACE expression and activity and may be predispose individuals to T2D and its complications (5). We examined ACE gene polymorphism, one of the important genes in Renin-Angiotensin system (RAS), in T2D patients with and without nephropathy.

There are plausible reasons to support an association between ACE genotype and diabetic nephropathy. Clinical trials have shown that antihypertensive treatment decreases proteinuria in hypertensive diabetic patients with nephropathy (19, 20). A meta analysis showed that the risk of nephropathy was increased in the presence of DD or ID genotypes in Asian patients with type 2 diabetes (16). Jeffers et al. have shown an association between ACE DD genotype and DN (38).

Schmidt et al. found no differences between ACE allele and genotype frequency in diabetic patients with and without nephropathy (39). Liao et al. did not observe any association between ACE genotypes and DN (40).

Our study did not show a positive association between the DD genotypes of ACE gene polymorphism in DN and type 2 diabetic. Relative risk for DD homozygous subjects was 1.30 (DN vs DM, 95% CI= 0.95-1.70, $P= 0.15$). We also investigated the frequency between the D allele (DD+ID) and II genotype in two groups. The D allele frequency in DN group was found slightly higher than that of the T2D ($X^2= 0.684$, OR= 0.709, 95% CI: 0.313-1.606, $P= 0.408$) that indicated the D allele was not associated with DN. The observed genotype distribution was in agreement with the Hardy-Weinberg proportion.

We also investigated the relationship between the D allele and the development of DN in T2D patients with nephropathy (95% CI: 0.93-1.45,
RR= 1.16, P= 0.19). Our study showed that the D allele did not associate with DN. Our finding is not in accordance with data obtained in the report of Ohno (Odds ratio= 2.6) and Yoshida (Odds ratio= 4.6) (41, 42), but this study is consistent with previous studies in Asian population (43-49).

In conclusion, data of this investigation concluded that DD genotype and D allele in type 2 diabetic patients with and without nephropathy were insignificant.

Acknowledgements
This work was supported by grant NO.7546 from Tehran University of Medical Sciences, Iran.

References

43. Lewis EJ, Hunsicker LG, Bain RP, Robde RD (1993). The effect of ACE inhibi-