Repellency Effect of Myrtle Essential Oil and DEET against *Phlebotomus papatasi*, under Laboratory Conditions

MR Yaghoobi-Ershadi 1, AA Akhavan 1, E Jahanifard 1, H Vatandoost 1, Gh Amin 2, L Moosavi 3, AR Zahraei Ramazani 4, H Abdoli 4, MH Arandian 4

1Dept. of Medical Entomology and Vector Control, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Iran
2 Dept. of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Iran
3 School of Pharmacy, Islamic Azad University, Tehran, Iran
4 Isfahan Health Research and Training Center, Institute of Public Health, Tehran University of Medical Sciences, Isfahan, Iran

(Received 10 Jan 2006; revised 16 Apr 2006; accepted 7 Jun 2006)

Abstract
Zoonotic cutaneous leishmaniasis (ZCL) is an increasing and important public health problem in Iran. The use of repellents is recommended as one of the important means of personal protection against vectors of ZCL. This paper reports the repellency effect of the plant Myrtle, *Myrtus communis* (Myrtaceae), essential oil for protection against 3-7-day-old unfed females of the sandfly, *Phlebotomus papatasi* Scopoli for the first time in Iran. The tests were carried out under laboratory conditions, using dose-response testing procedure on white rabbits and the results were compared with commonly used repellent, diethyl-3-methylbenzamid (DEET). The modified Wirtz method using K & D apparatus was employed. Effective Dose (EDs) values were estimated from the probit regression line. ED50 was measured as 0.1140 and 0.0006 mg/cm2 for Myrtle essential oil and DEET, respectively. The laboratory tests showed that both Myrtle essential oil and DEET had repellency effects against *P. papatasi*. In addition, the insecticidal action of Myrtle oil was also observed. We concluded that the two repellents could be used as a mean of personal protection against sand flies.

Key words: Phlebotomus papatasi, Myrtus communis, DEET, Insect repellent, Vector control, Iran

Introduction
Phlebotomus papatasi Scopoli is the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iran. The disease is prevalent in 50% of many rural areas in 30 provinces of the country (1). The control of the vector has received considerable attention in recent years due to the increasing and resurgence of the disease in some non-endemic areas of the country. The use of repellents has been considered as an important means of personal protection against blood feeding insects, as well as for controlling arthropod borne diseases by reducing man-vector contact (2). There are many reports on the repellency effect of natural and synthesized chemical agents on medically important arthropods especially mosquitoes (3-7), comparatively few reports are available with regard to phlebotomine sand fly repellents (8). A major reason for this discrepancy is the relative difficulty of sand fly rearing in sufficient numbers for laboratory repellent tests (9) as well as inadequate information about the components and mode of action of repellents. Although recently WHO proposed that at least five possible modes

Corresponding author: Tel: +98 21 8897390-3, Ext 2114, E-mail: yaghoobia@sina.tums.ac.ir
of action for repellents against mosquitoes exist i.e., inhibit response to an otherwise attractive signal; switch the sensory message from attraction to repulsion; activate a receptor system that controls a competing behavior; activate a noxious odor receptor or activate different receptor types simultaneously causing loss of the specific signal for host finding (10).

The success of the sand fly rearing methods has solved this problem and several studies on the repellent testing, are being pursued (11, 12).

The majority of commercial repellent products contain the chemical DEET (diethyl-3-methylbenzamide, formerly known as diethyl-m-toluamide), which was first synthesized in 1954 (13). Although DEET was used for several years against blood-sucking arthropods and provide 96% protection rate for 6 h against a variety of mosquito species in tropical environment (14), but due to some report of its allergic and toxic effects the use of this compound is under investigation (15, 16). DEET, in combination with certain other agents, is suspected of causing Gulf War Syndrome (17, 18), although this matter is still controversial. Because of this undesirable side effects of DEET, some researches were actively carried out to find an alternative compound that is safer to use and equally or more effective (19-22).

The medicinal plants have received close attention because of their acceptability, availability, and low cost (23, 24). *Myrtus communis* is a native evergreen shrub distributed in south, north, and central parts of Iran (25, 26). Myrtle is a medicinal plant that has been used for complaints of incipient phthisis, bronchitis, cystitis and pyelitis, traditionally for cerebral affections, dyspepsia and scorpion bite (27) and as a disinfectant (28). This plant was used as an insect repellent against stored-product pests (29) but there is no published data on its repellency effects on the sand flies.

The objectives of present study were to evaluate Myrtle, *Myrtus communis* (Myrtaceae), essential oil for repellency against *Phlebotomus papatasi* and its comparative efficacy with DEET, a common repellent used in personal protection against blood feeding insects, under laboratory condition.

Materials and Methods

Sand flies

The colony of *P. papatasi* used in this study originated in Badrood rural district, an endemic focus of ZCL, Natanz county, central Iran. This colony has been maintained at the sand fly Insectary of School of Public Health, Tehran University of Medical Sciences, Iran. *P. papatasi* has been initiated using Killick-Kendrick and Killick-Kendrick (11) and was reared using Modi & Tesh methods (12). The sand flies were reared at 26±2 °C and 85±5% relative humidity (RH) under photoperiod (L:D) 14:10. Female sand flies were tested 3-7 d after eclosion. The insects were held in the test cages without water or food 9-10 h prior to experiments.

Chemicals

DEET was purchased from Merck, Germany (8.17033.1000 DIETHYL-TOLUAMIDE USP, Batch S36954, Assay 98.8%, Density: 0.998 gr/cm³) which is widely used in commercially available preparation (30). The essential oil of Myrtle was extracted from the dried leaves, collected from its natural habitat in Manjil, north of Iran, using hydrodistillation method (31). Collected specimens were identified and deposited in the herbarium of Faculty of Pharmacy (TEH), Tehran University of Medical Sciences under Voucher Number 6648-TEH. To prepare corresponding concentrations, the compounds were diluted by absolute ethanol.

Test procedure

The test system was similar to the white rabbit method as described by Wirtz et al. (32) and using modified K&D (33) apparatus. In summary, white rabbits, 6-9 m old, were used in all experiments. The animals were anesthetized with Ketamin hydrochloride (1ml/kg) and Acepromazine (1 ml/kg). The belly of the animal was shaved before testing. Three sets of 12 cm² test areas were outlined on the rabbit’s belly using a cardboard template and marker pen. These areas were treated with 50 µl of the repellents in absolute ethanol. To prevent
any interference in each test only one dose of each repellent was applied. Absolute ethanol was also used as control. The treated areas were allowed to dry for 5 min and then the quadrangle holes in the bottom of K & D apparatus aligned with treated areas. Each test cage contained 4-7 flies, altogether 12-21 for each apparatus. For each dose only one rabbit was used. Probing counts were recorded at 1 min intervals for duration of 5 min and the results pooled for statistical analysis. The tests were then repeated at different doses at various interval occasions. To obtain an acceptable estimate of ED50 and ED90, the treated areas on the rabbit’s belly were swabbed with Isopropanol pads. The tests were usually conducted several times to reduce the heterogeneity of populations of sand flies. Fly mortality was also recorded 24 h after recovery period.

Statistical analysis Data were subjected to the Finney probit 1971 (34) and from the regression line, ED50, ED90, confidence limits and slope values were measured.

Results

From 100 gram of the Myrtle-dried leaves, 1.9 ml essential oil was obtained. The density of Myrtle oil was calculated as 0.8897gr/cm³. Table 1 shows the results of 118 tests conducted to estimate the median effective dose (EDs) of the two experimental repellents. The tests were carried out on 275 and 273 P. papatasi for DEET and Myrtle oil, correspondingly. ED50 and ED90 were calculated as 0.1140 and 0.6711 mg/cm² for Myrtle essential oil, respectively. The figures for DEET were 0.0006 and 0.0111 mg/cm², in that order. The ranking of the repellents was based on the point estimates of the ED50. The observed data and calculated dose-response curves for these repellents are shown in Fig. 1 and 2. Significant difference was observed between ED50 of DEET and Myrtle essential oil ($P<0.05$). The insecticidal action of Myrtle oil was also observed during the study. Table 2 shows the mortality rate of the sand flies exposed to Myrtle oil after 24 h recovery period. The mortality after exposing to repellents was only observed when sand flies exposed to high doses of Myrtle oil. The highest mortality rate was 62.2% at dosages of 1 mg/cm².

![Graph](image-url)
Fig. 1: Dose-response curve for Myrtle essential oil against P. papatasi tested with white rabbits. Dosages are plotted on the logarithmic scale, Sand fly Insectary, SPH, TUMS, 2005
Table 1: Effectiveness of DEET and Myrtle essential oil against *Phlebotomus papatasi* tested on white rabbits, Sand fly Insectary, Tehran, 2005.

<table>
<thead>
<tr>
<th>Repellents</th>
<th>No. flies</th>
<th>ED50 (mg/cm²)</th>
<th>95% C.L.* (mg/cm²)</th>
<th>ED90 (mg/cm²)</th>
<th>95% C.L.* (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEET</td>
<td>275</td>
<td>0.0006</td>
<td>0.0001-0.0017</td>
<td>0.0111</td>
<td>0.0031-0.4338</td>
</tr>
<tr>
<td>Myrtle</td>
<td>273</td>
<td>0.1140</td>
<td>0.0472-0.1975</td>
<td>0.6711</td>
<td>0.3663-2.3019</td>
</tr>
</tbody>
</table>

*Mean dosages are significantly different (*P*<0.05) from each other if 95% confidence limits (C.L) do not overlap. ED50: effective dose cause 50% of prohibiting of bites.

Table 2: Mortality rate (%) of *P. papatasi* exposed to Myrtle essential oil after 24 hours recovery period.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>No. sand flies</th>
<th>Abbot correction mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 mg/cm²</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>0.1 mg/cm²</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>0.2 mg/cm²</td>
<td>45</td>
<td>4.4</td>
</tr>
<tr>
<td>0.4 mg/cm²</td>
<td>30</td>
<td>4.4</td>
</tr>
<tr>
<td>0.8 mg/cm²</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>1.6 mg/cm²</td>
<td>45</td>
<td>62.2</td>
</tr>
</tbody>
</table>

Discussion

In this study, the repellency effect of the Myrtle essential oil against *P. papatasi* was studied under laboratory condition and compared with DEET for the first time in Iran and the world as well. DEET was found to be more effective as a repellent than Myrtle essential oil against the sand fly. It is postulated that essential oil of the
plant may contain different components and their mode of action should be studied furthermore. It should be mentioned that different methods have been used in the evaluation of the repellents. Due to the lack of a standard method, the results of different investigation are not completely comparable. However, regarding the available published data, the strain of *P. papatasi* used in this study was more sensitive to DEET than *Lu. longipalpis* (35) but by comparison with the other strains of *P. papatasi* is controversial. ED50 of DEET against other strains of *P. papatasi* has been reported 0.0022 mg/cm² and 0.21 ng/m². (36, 37). The less effectiveness of Myrtle essential oil in comparison with DEET is similar to some other botanic compounds (37). *P. papatasi* seems to be more sensitive to repellents than certain tsetse flies, mosquitoes, and reduviid bugs (38- 40).

In this study, the insecticidal property of Myrtle essential oil was also observed. This action was demonstrated when Pulse beetle, *Callosobruchus chinensis*, was exposed to Myrtle extract (29). This property against *Culex pipiens* was also observed (41). The proper use of repellents would appear to be an especially effective method to prevent biting and sand fly borne diseases. It was concluded that the two repellents could be used as one of the means of personal protection against *P. papatasi*. For recommendation of both repellents in the field, a comprehensive study on the durability and repellency effect is undergoing in laboratory and field conditions.

Acknowledgments

The authors wish to thank the staff of the herbarium of School of Pharmacy particularly Mr. Badarkhani, for his kind assistance in plant collection. The sincere thanks are also extended to leishmaniasis staff of Isfahan Health Research and Training Center for their assistance in sand fly collection and colony initiation. Thanks are also due to Ms Saidi for maintaining and breeding of *P. papatasi* at the Sand fly Insectary of School of Public Health, Tehran University of Medical Sciences, Iran. This project received financial support from vice chancellorship for research affairs of TUMS (Project No 132.10466-83.12.26).

References

